US009092447B1

a2z United States Patent (10) Patent No.: US 9,092,447 B1
Anderson et al. 45) Date of Patent: *Jul. 28, 2015
’
(54) METHOD AND SYSTEM FOR DUPLICATE 4,205,780 A 6/1980 Burns et al.
DETECTION 4,264,808 A 4/1981 Owens et al.
4,321,672 A 3/1982 Braun et al.
. 4,396,985 A 8/1983 Ohara
(71) Applicant: JPMorgan Chase Bank, N. A., New RE31.692 E 10/1984 Tyburski et al.
York, NY (US) 4495018 A 1/1985 Vohrer
4617457 A 10/1986 Myers
(72) Inventors: Milton M. Anderson, Fair Haven, NJ 4,672,377 A 6/1987 Murphy
(US); Dieter Scriven, Columbus, OH 4,694,397 A 9/1987 Grant et al.
(US) 4,700,055 A 10/1987 Kashkashian, Jr.
(Continued)
(73) Assignee: JPMORGAN CHASE BANK, N.A.,
New York, NY (US) FOREIGN PATENT DOCUMENTS
* e H H H H EP 421808 4/1991
(*) Notice: Subject. to any dlsclalmer,. the term of this P 1014318 6/2000
patent is extended or adjusted under 35)
U.S.C. 154(b) by 237 days. (Continued)
;1"1121111;1 E?tent is subject to a terminal dis- OTHER PUBLICATIONS
Hunt, Robert M., An Introduction to the Economics of Payment Card
(21) Appl. No.: 13/790,827 Networks.
(22) Filed: Mar 8, 2013 (Continued)
Related U.S. Application Data
(63) Continuation-in-part of application No. 13/616,099, Primary Examiner—Nan?y Bitar .
filed on Sep. 14, 2012, now Pat. No. 8,639,017, which (74) Attorney, Agent, or Firm — Hunton & Williams LLP
is a continuation of application No. 12/254,333, filed
on Oct. 20, 2008, now Pat. No. 8,391,584. (57) ABSTRACT
G IGn0t6gll 730 2006.01 A system and method for detecting duplicates during process-
(01) ing. The duplicate detection may be performed by a financial
(52) US.CL institution, such as a bank. The method may be implemented
CPC i GO6F 17/30156 (2013.01) on a computer based system. The duplicate detection method
(58) Field of Classification Search may be automated. The method may be applied initially to
None o) incoming electronic data files prior to further processing of
See application file for complete search history. the electronic data to prevent processing of duplicate items.
. The system and method may use a function, such as a hash
(56) References Cited function, to perform the duplicate detection. Other functions,
U.S. PATENT DOCUMENTS such as a Bloom filter which may use multiple.: hash functions,
may be used to perform the duplicate detection.
3,653,480 A 4/1972 Yamamoto et al.
4,050,375 A 9/1977 Orleans
4,141,078 A 2/1979 Bridges et al. 38 Claims, 9 Drawing Sheets

100

110

Check Accounting Data
Received

!

115

Check Accounting Data
Extracted, and Normalized

1

120
Create String of Characters

l

125

Apply Function to String

]

130
Identify Suspected
Duplicates

l

136
Review Suspected
Duplicates

US 9,092,447 B1
Page 2

(56)

4,713,761
4,752,877
4,797,913
4,799,156
4,807,177
4,812,628
4,823,264
4,893,333
4,931,793
4,939,674
4,948,174
4,974,878
4,975,841
4,988,849
4,992,646
4,992,940
5,023,904
5,053,607
5,054,096
5,080,748
5,111,395
5,121,945
5,122,950
5,136,502
5,175,682
5,187,750
5,198,975
5,220,501
5,225,978
5,237,159
5,265,007
5,283,829
5,287,269
5,311,594
5,315,508
5,321,238
5,326,959
5,336,870
5,349,170
5,350,906
5,367,581
5,373,550
5,396,417
5,402,474
5,412,190
5,424,938
5,430,644
5,432,506
5,444,794
5,444,841
5,446,740
5,448,471
5,459,482
5,465,206
5,477,040
5,479,494
5,483,445
5,484,988
5,502,576
5,504,677
5,506,691
5,508,731
5,513,250
5,532,464
5,544,043
5,544,046
5,550,734
5,551,021
5,557,515
5,563,400
5,566,330
5,568,489
5,570,465
5,572,004
5,583,759

References Cited

U.S. PATENT DOCUMENTS

B e 3 B D e 0 0> 0 B 0 0 0 D B B 0 0 B B 0 0 D D 0 0 0 B 0 B 0 0 D B B 0 3 D B D 0 0 D 0 e 0 B D B 0 D B B 0 B D B D 0 0 D 0 0 > D

12/1987
6/1988
1/1989
1/1989
2/1989
3/1989
4/1989
1/1990
6/1990
7/1990
8/1990

12/1990

12/1990
1/1991
2/1991
2/1991
6/1991

10/1991

10/1991
1/1992
5/1992
6/1992
6/1992
8/1992

12/1992
2/1993
3/1993
6/1993
7/1993
8/1993

11/1993
2/1994
2/1994
5/1994
5/1994
6/1994
7/1994
8/1994
9/1994
9/1994

11/1994

12/1994
3/1995
3/1995
5/1995
6/1995
7/1995
7/1995
8/1995
8/1995
8/1995
9/1995

10/1995

11/1995

12/1995

12/1995
1/1996
1/1996
3/1996
4/1996
4/1996
4/1996
4/1996
7/1996
8/1996
8/1996
8/1996
8/1996
9/1996

10/1996

10/1996

10/1996

10/1996

11/1996

12/1996

Sharpe et al.
Roberts et al.
Kaplan

Shavit

Ward

Boston et al.
Deming

Baran et al.
Fuhrmann et al.
Price et al.
Thomson et al.
Josephson
Kehnemuyi et al.
Sasaki

Collin
Dworkin
Kaplan
Carlson
Beizer
Bonomi

Smith
Thomson et al.
Mee

Van Remortel et al.
Higashiyama
Behera

Baker et al.
Lawlor
Peterson
Stephens
Barnhard, Jr. et al.
Anderson
Dorrough et al.
Penzias

Bain et al.
Watanabe
Perazza
Hughes

Kern

Brody et al.
VanHorn
Campbell
Burks et al.
Miller
Kopesec
Wagner
Deaton et al.
Chapman
Uhland
Glasser et al.
Yien

Deaton et al.
Orlen

Hilt et al.
Lalonde
Clitherow
Pickering
Hills

Ramsay et al.
Pollin

Bednar et al.
Kohorn
McAllister
Josephson et al.
Miki et al.
Niwa

Tarter et al.
Harada
Abbruzzese et al.
Le Roux
Sheffield

Yien
Tsakanikas
Raimann

Geer

5,583,760
5,590,196
5,590,197
5,592,377
5,592,378
5,599,528
5,603,025
5,615,109
5,621,201
5,640,577
5,642,419
5,649,117
5,652,786
5,659,165
5,659,469
5,659,741
5,666,493
5,677,955
5,679,938
5,679,940
5,687,250
5,692,132
5,699,528
5,703,344
5,704,044
5,708,422
5,715,298
5,715,314
5,715,399
5,717,989
5,724,424
5,727,153
5,748,780
5,751,842
5,757,917
5,770,843
5,774,553
5,783,808
5,784,696
5,793,861
5,794,221
5,802,498
5,802,499
5,819,236
5,819,238
5,826,241
5,826,245
5,832,447
5,832,460
5,832,463
5,832,464
5,832,488
5,835,580
5,835,603
5,835,899
5,852,812
5,859,419
5,864,609
5,870,456
5,870,721
5,870,723
5,870,725
5,873,072
5,878,141
5,883,810
5,884,288
5,884,290
5,897,625
5,898,157
5,903,881
5,910,896
5,910,988
5,915,246
5,917,965
5,920,847
5,930,778
5,940,811
5,940,844
5,943,656

B e 3 0 0 > 3 0 B e e 0 D B e 0 0 B B 0 0 D D 0 0 0 B D e 0 0 D B 0 0 D B D 0 0 0 D 0 e 0 B D B 0 0 0 0 B 0 D B D 0 0 0 0 D 0 B D B B 0 O

12/1996
12/1996
12/1996
1/1997
1/1997
2/1997
2/1997
3/1997
4/1997
6/1997
6/1997
7/1997
7/1997
8/1997
8/1997
8/1997
9/1997
10/1997
10/1997
10/1997
11/1997
11/1997
12/1997
12/1997
12/1997
1/1998
2/1998
2/1998
2/1998
2/1998
3/1998
3/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
9/1998
9/1998
10/1998
10/1998
10/1998
10/1998
11/1998
11/1998
11/1998
11/1998
11/1998
11/1998
11/1998
11/1998
12/1998
1/1999
1/1999
2/1999
2/1999
2/1999
2/1999
2/1999
3/1999
3/1999
3/1999
3/1999
4/1999
4/1999
5/1999
6/1999
6/1999
6/1999
6/1999
7/1999
7/1999
8/1999
8/1999
8/1999

Klesse
Moreau

Chen

Lipkin
Cameron
Igaki

Tabb

Eder
Langhans
Scharmer
Rosen
Landry
Rogers
Jennings
Deaton et al.
Eberhardt
Wojcik et al.
Doggett et al.
Templeton
Templeton
Curley et al.
Hogan
Hogan

Bezy et al.
Tarter et al.
Blonder et al.
Rogers

Payne

Bezos
Tozzoli et al.
Gifford
Powell

Stolfo

Eccles

Rose et al.
Rose et al.
Rosen
Josephson
Melnikof
Haigh
Egendorf
Comesanas
Sampson et al.
Josephson
Fernholz
Stein
Sandberg-Diment
Rieker
Bednar

Funk
Houvener et al.
Eberhardt
Fraser

Coutts

Rose et al.
Reeder

Wynn

Cross et al.
Rogers
Norris

Pare
Bellinger et al.
Kight

Daly et al.
Franklin et al.
Chang
Smorodinsky et al.
Gustin
Mangili et al.
Schrader
Hahn-Carlson
Ballard
Patterson et al.
Cahill et al.
Kolling et al.
Geer

Norris

Cahill et al.
Crooks

US 9,092,447 B1

Page 3
(56) References Cited 6,209,095 Bl 3/2001 Anderson et al.
6,213,391 Bl 4/2001 Lewis
U.S. PATENT DOCUMENTS 6,227,447 Bl 5/2001 Campisano
6,233,565 B1 5/2001 Lewis et al.
5,945,653 A 8/1999 Walker et al. 6,233,566 Bl 5/2001 Levine et al.
5956700 A 9/1999 Landry 6,236,972 Bl 5/2001 Shkedy
5,963,659 A 10/1999 Cahill et al. 6,240,444 Bl 52000 Finetal.
5,963,925 A 10/1999 Kolling et al. 6,278,981 Bl 82001 Dembo et al.
5,966,698 A 10/1999 Pollin 6,289,322 Bl 9/2001 Kitchen et al.
5.078.780 A 11/1999 Watson 6,292,789 Bl 9/2001 Schutzer
5087435 A 11/1999 Weiss et al. 6,301,379 B1 10/2001 Thompson et al.
5987436 A 11/1999 Halbrook 6,301,567 Bl 10/2001 Leong et al.
5987439 A 11/1999 Gustin et al. 6,304,858 Bl 10/2001 Mosler et al.
5,991,750 A 11/1999 Watson 6,321,212 Bl 11/2001 Lange
6,000,832 A 12/1999 Franklin et al. 6,324,524 Bl 11/2001 Lentetal.
6,003,762 A 12/1999 Hayashida 6,338,047 Bl 1/2002 Wallman
6.006.208 A 12/1999 TForst et al. 6,338,049 Bl 1/2002 Walker et al.
6009442 A 12/1999 Chen et al. 6,343,279 Bl 1/2002 Bissonette et al.
6,014:636 A 1/2000 Reeder 6,363,164 Bl 3/2002 Jones et al.
6,016,482 A 1/2000 Molinari et al. 6,363,364 Bl 3/2002 Nel
6,016,484 A 1/2000 Williams et al. 6,363,365 Bl 3/2002 Kou
6,018,718 A 1/2000 Walker et al. 6,366,967 Bl 4/2002 Wagner
6,021,202 A 2/2000 Anderson et al. 6,374,235 Bl 4/2002 Chen et al.
6,026,388 A 2/2000 Liddy etal. 6,390,362 Bl 52002 Martin
6,029,139 A 2/2000 Cunningham et al. 6,393,409 B2 52002 Young et al.
6,032,133 A 2/2000 Hilt et al. 6,405,173 Bl 6/2002 Honarvar et al.
6.032.137 A 2/2000 Ballard 6,415,259 Bl 7/2002 Wolfinger et al.
6035281 A 3/2000 Crosskey et al. 6,418,419 Bl 7/2002 Nieboer et al.
6,035,285 A 3/2000 Schiect et al. 6,418,420 Bl 7/2002 DiGiorgio et al.
6.035.287 A 3/2000 Stallaert et al. 6,418,430 Bl 7/2002 DeFazio et al.
6.038.553 A 3/2000 Hyde, Jr. 6,434,159 Bl 82002 Woodward et al.
6,041,312 A 3/2000 Bickerton et al. 6,446,072 Bl 9/2002 Schulze et al.
6,041,315 A 3/2000 Pollin 6,460,020 B1 10/2002 Pool et al.
6,044,362 A 3/2000 Neely 6,490,568 Bl 12/2002 Omara et al.
6,045,039 A 4/2000 Stinson et al. 6,493,685 Bl 12/2002 Ensel et al.
6,047,261 A 4/2000 Siefert 6,535,896 B2 3/2003 Britton et al.
6.052.674 A 4/2000 Zervides et al. 6,536,663 Bl 3/2003 Lozier et al.
6058380 A 5/2000 Anderson et al. 6,554,185 B1 4/2003 Montross et al.
6,058,381 A 5/2000 Nelson 6,574,350 Bl 6/2003 Rhoads et al.
6061’665 A 5/2000 Bahreman 6,574,377 Bl 6/2003 Cabhill et al.
6.064.764 A 5/2000 Bhaskaran et al. 6,578,000 Bl 6/2003 Dodrill et al.
6,064,987 A 5/2000 Walker et al. 6,578,015 Bl 6/2003 Haseltine et al.
6,065,675 A 5/2000 Teicher 6,609,113 Bl 82003 O’Leary et al.
6,067,524 A 5/2000 Byerly et al. 6,609,125 Bl 82003 Layne et al.
6,070,150 A 5/2000 Remington et al. 6,609,200 B2 8/2003 Anderson et al.
6,070,798 A 6/2000 Nethery 6,629,081 Bl 9/2003 Cornelius et al.
6.073.104 A 6/2000 Field 6,636,615 Bl 10/2003 Rhoads et al.
6073.113 A 6/2000 Guinan 6,658,393 Bl 12/2003 Basch et al.
6,076:072 A 6/2000 Libman 6,661,910 B2 12/2003 Jones et al.
6.078.907 A 6/2000 Lamm 6,704,714 Bl 3/2004 O’Leary et al.
6.081.790 A 6/2000 Rosen 6,721,715 B2 4/2004 Nemzow
6,085,168 A 7/2000 Mori et al. 6,728,397 B2 4/2004 McNeal
6,088,683 A 7/2000 TJalili 6,820,058 B2 11/2004 Wood et al.
6,088,685 A 7/2000 Kiron et al. 6,825,940 Bl 11/2004 Wu et al.
6,088,686 A 7/2000 Walker et al. 6,860,375 B2 3/2005 Hallowell et al.
6,092,056 A 7/2000 Tull. Jr. et al. 6,954,896 B1 10/2005 Dodrill et al.
6.098.053 A 8/2000 Slat:er 6,965,882 B1 11/2005 Lapstun et al.
6.098.070 A 8/2000 Maxwell 6,970,259 Bl 11/2005 Luntetal.
6,105,011 A 8/2000 Morrison, Jr. 6,970,855 B2 11/2005 Dasetal.
6.108.639 A 8/2000 Walker et al. RE38,957 E 1/2006 Laussermair et al.
6.110,044 A 82000 Stemn 7004382 B2 22006 Sandru
6,111,858 A 8/2000 Greaves et al. 7,062,456 Bl 6/2006 Riehl et al.
6,115,690 A 9/2000 Wong 7,068,832 Bl 6/2006 Price et al.
6,119,106 A 9/2000 Mersky et al. 7,104,443 Bl 9/2006 Paul et al.
6,119,107 A 9/2000 Polk 7,133,846 B1 11/2006 Ginter et al.
6,125354 A 9/2000 MacFarlane et al. 7,177,836 Bl 2/2007 German et al.
6,128,602 A 10/2000 Northington et al. 7,200,255 B2 4/2007 Jones et al.
6,128,603 A 10/2000 Dent et al. 7,313,543 B1 12/2007 Crane et al.
6,129.273 A 10/2000 Shah 7,317,823 Bl 1/2008 Price et al.
6,138,118 A 10/2000 Koppstein et al. 7,337,148 B2 2/2008 Xieetal.
6,144,946 A 11/2000 Iwamura 7,349,884 Bl 3/2008 Odom
6,148,293 A 11/2000 King 7,380,707 Bl 6/2008 Fredman
6,149,055 A 11/2000 Gatto 7,401,048 B2 7/2008 Rosedale et al.
6,149,056 A 11/2000 Stinson et al. 8,185459 B2 52012 Walletal.
6,173,272 Bl 1/2001 Thomas et al. 2001/0011222 Al 82001 McLauchlin et al.
6,181,837 Bl 1/2001 Cahill et al. 2001/0018666 Al 82001 Sugiyama et al.
6,185,544 Bl 2/2001 Sakamoto et al. 2001/0018739 Al 82001 Anderson et al.
6,202,054 Bl 3/2001 Lawlor etal. 2001/0032139 Al 10/2001 Debonnett, Jr.
6,205,433 Bl 3/2001 Boesch et al. 2001/0037300 Al 11/2001 Miyazaki et al.

US 9,092,447 B1
Page 4

(56)

2001/0037309
2001/0047334
2001/0047489
2001/0051533
2002/0012445
2002/0013728
2002/0023055
2002/0026394
2002/0038363
2002/0046169
2002/0052842
2002/0055907
2002/0069134
2002/0072976
2002/0077978
2002/0082985
2002/0087415
2002/0087468
2002/0087469
2002/0091635
2002/0100803
2002/0107770
2002/0107788
2002/0111837
2002/0128981
2002/0138398
2002/0169658
2002/0170966
2002/0178071
2002/0184151
2002/0194096
2002/0198817
2002/0199182
2003/0018557
2003/0028790
2003/0037002
2003/0040959
2003/0046218
2003/0055675
2003/0069780
2003/0097335
2003/0105641
2003/0110442
2003/0120686
2003/0130945
2003/0130952
2003/0144942
2003/0187789
2003/0191710
2003/0200107
2003/0208421
2003/0208441
2003/0225663
2003/0233305
2003/0237046
2004/0064409
2004/0078328
2004/0133516
2004/0201735
2004/0228514
2005/0018668
2005/0033690
2005/0055254
2005/0086178
2005/0091156
2005/0097050
2005/0144059
2005/0177480
2005/0207635
2005/0209954
2005/0261955
2006/0106650
2006/0106717
2006/0136335
2006/0178986

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

11/2001
11/2001
11/2001
12/2001
1/2002
1/2002
2/2002
2/2002
3/2002
4/2002
5/2002
5/2002
6/2002
6/2002
6/2002
6/2002
7/2002
7/2002
7/2002
7/2002
8/2002
8/2002
8/2002
8/2002
9/2002
9/2002
11/2002
11/2002
11/2002
12/2002
12/2002
12/2002
12/2002
1/2003
2/2003
2/2003
2/2003
3/2003
3/2003
4/2003
5/2003
6/2003
6/2003
6/2003
7/2003
7/2003
7/2003
10/2003
10/2003
10/2003
11/2003
11/2003
12/2003
12/2003
12/2003
4/2004
4/2004
7/2004
10/2004
11/2004
1/2005
2/2005
3/2005
4/2005
4/2005
5/2005
6/2005
8/2005
9/2005
9/2005
11/2005
5/2006
5/2006
6/2006
8/2006

Vrain

Nappe et al.

Ito et al.
Wietzke et al.
Perry

Wilkman
Antognini et al.
Savage et al.
MaclLean
Keresman, I1I et al.
Schuba et al.
Pater et al.
Solomon
Virtanen et al.
O’Leary et al.
MacKay

Allen et al.
Ganesan et al.
Ganesan et al.
Dilip et al.

Sehr

Meyer et al.
Cunningham
Aupperle
Kawan et al.
Kalin et al.
Adler
Hannigan et al.
Walker et al.
Maloney
Falcone et al.
Dhir
Whitehead
Gilbert et al.
Bleumer et al.
Higgins et al.
Fei et al.
Albanese et al.
Klein Twennaar
Hailwood et al.
Muskowitz et al.
Lewis

Battle

Kim et al.
Force et al.
Bell et al.
Sobek

Karas et al.
Green et al.
Allen et al.
Vicknair et al.
Poplawski et al.
Horan et al.
Solomon
Parker et al.
Kight et al.
Talbert et al.
Buchanan et al.
Baron

Houle et al.
Cheritoncoccecvvenene, 370/389
Antognini et al.
Schmidtberg et al.
Xie et al.
Hailwood et al.
Orcutt
Schuessler
Huang
Lazaretal.cccoo.... 382/139
Asher et al.
Humble et al.
Bush

Randle et al.
Ferguson, III
Giordano et al.

2006/0206427 Al 9/2006 Love et al.

2006/0282389 Al 12/2006 Gupte

2006/0287953 Al 12/2006 Chauhan

2007/0294183 Al 12/2007 Camenisch et al.

2008/0103790 Al* 5/2008 Abernethyetal. ... 705/1
2008/0116257 Al* 5/2008 Fickling 235/379
2008/0154852 Al* 6/2008 Beyeretal. ..o 707/3
2008/0193008 Al 8/2008 Mount et al.

2011/0288974 Al* 11/2011 Pearsonetal. 705/34

FOREIGN PATENT DOCUMENTS

WO WO 91/16691 10/1991
WO WO 93/08545 4/1993
WO WO 94/28497 12/1994
WO WO 96/08783 3/1996
WO WO 96/12242 Al 4/1996
WO WO 97/14108 4/1997
WO WO 97/45796 12/1997
WO WO 97/45814 12/1997
WO WO 98/09260 3/1998
WO WO 99/10823 3/1999
WO WO 00/39979 7/2000
WO WO 01/75730 A2 10/2001
WO WO 02/063432 A2 8/2002
WO WO 2004/079603 9/2004
WO WO 2008/057928 5/2008
OTHER PUBLICATIONS

Annual Report Pursuant to Sectin 13 or 15(d) of the Securities
Exchange Act of 1934, Form 10-K, Intelidata Technologies Corpo-
ration, Fiscal Year Ended Dec. 31, 2001.

Blockbuster running test of a stored value card, The American
Banker, Sep. 1, 1995.

CES/NaBANCO introduces stored value card technology block-
buster video is first merchant partner, Business Wire, Inc., Jan. 15,
1996.

Card Flash Daily Payment Card News, www.cardweb.com, printed
Sep. 23, 2004.

Anonymous, Chase Manhattan introduces new FEDI payables prod-
uct, ProQuest document ID: 7806951, ISSN/ISBN: 02686635, May
1995.

Bills, Chase Pact Done, What’s Next for Web Vendors?, The Ameri-
can Banker, Technology Section, Jun. 3, 2002, p. 23.

Reinbach, Chase steps up treasury system, ProQuest documednt ID
8723558, ISSN/ISBN: 10459472, Nov. 1995.

Anonymous, Chasing the global trend, Cash Management News,
proQuest document ID 9319923, ISSN/ISBN: 02686635, Dec. 1995.
Malhotra, Clearing House Enumerates e-Payments Ills, The Ameri-
can Banker, vol. 167, No. 154, Aug. 23, 2002.

Marjanovic, Corporate Services: Chase Gears Up Global Payments
System Series: 16, The American Banker, vol. 160, Issue 174, Sep.
11, 1995, p. 41.

Gluck, Creating a Global Cash-Management Game Plan, Bank Sys-
tems & Technology, Feb. 1997, p. 28.

Lamond, Credit Card Transactions Real World and Online, Paying by
Credit Card—Real World and Online, http://www.virtualschool.edu/
mon/ElectronicProperty/klamond/credit, printed Jul. 8, 2005, 17
pages.

Lamond, Keith, Credit Card Transactions Real World and Online,
http://www.virtualschool.edu/mon/ElectronicProperty/klamond/
credit__card htm, pp. 1-17, printed Jul. 8, 2005.

Dialog file 20, #10279554; Offer: Book Yourself Free Cassettes; Mar.
25, 2000; Birmingham Post, p. 16.

Du Pont’s Electronic Payments, Corporate EFT Report, v9, n1, Dia-
log file 636, Accession No. 01066902, Jan. 11, 1989.

Carreker, Electronic check presentment: Capturing new technology,
http://proquest.umi.com, Banking Management, Rolling Meadows:
vol. 71, Issue 2, Mar./Apr. 1995, p. 32, 5 pages.

Fidelity Helps Fund Sellers Trim the Taxes They’ll Owe, The Wall
Street Journal, Nov. 7, 2002.

First Data markets stored-value cards, Cards International, Jan. 30,
1996, p. S.

US 9,092,447 B1
Page 5

(56) References Cited
OTHER PUBLICATIONS

Norris, First data unit develops blockbuster cash card, Omaha World
Hearld Sunrise Edition, Business Section, Jan. 19, 1996, p. 16.
Harsh Truth: Your Investments Likely Won’t Make Any Money.
Money, Initial Launch to 200 Credit Unions, USA Today.com, Jun.
27,2002.

Decovny, Net Scope, Banking Technology, May 1997.

Nokia Announces the World’s First NFC Enabled Mobile Product for
Contactless Payment and Ticketing, PRNewswire, Feb. 9, 2005.
Armstrong, Douglas, Norwest eases difficulty of Interstate banking
Bank’s customers may use the same account number at any branch.
Goode, On Profit, Loss and the Mysteries of the Mind, The New York
Times, Nov. 5, 2002.

Anonymous, Operating in a multi-currency environment, ProQuest
document ID 9215937, ISSN/ISBN 09589309, Oct. 1995.

Mabher and Troutman, Payor’s Prescription for Painless Migration to
Electronic Healthcare Payments and Remittance Advices, PNC
Bank, Dec. 2001.

Maturi, Richard, Personal Finance; When you Need to Send Cash in
a Flash.

Press Release, Mar. 5, 2004, Payment Data Systems Files Patent on
Debit Card Payment Solution, American City Business Journals,
Inc., Mar. 5, 2004.

Mabher and Troutman, Provider’s Prescription for Painless Migration
to Receipt of Electronic Healthcare Payments and Remittance
Advices, PNC Bank, Dec. 2001.

Anonymous, Systems spell change for foreign exchange, Global
Investor, ProQuest document ID 10561528, ISSN/ISBN: 09513604,
Nov. 1996.

French, Tech Stocks: Market Movers, Investors Worry CheckFree
Being Chased from Its Own Game, http://www.thestreet.com, Jun.
20, 2002.

Technology, In Brief Wachovia-InteliData Deal, May 7, 2002.
Zuckerman, The Hedge-Fund Craze, The Wall Street Journal, Jun.
12, 2002.

McDonald, The Stars in the Sky Flicker, and Fund Stars Do the Same,
The Wall Street Journal, Jan. 15, 2003.

Anonymous, Visa & Carnegie Mellon Plan Online Payment Scheme,
Newsbyte News Network, Feb. 15, 1995.

Financial News, Wells Fargo Rolls Out Nationwide Lockbox Check
Conversion, PR Newswire Association, Apr. 22, 2003.

Terrie Miller and Henry Yan, When Custody Governs, Benefits
Canada, Toronto, Feb. 1998, vol. 22, Issue 2, p. 33, 5 pages.
Anderson, M., “The Electronic Check Architecture”, Financial Ser-
vices Technology Consortium, Version 1.0.2, (Sep. 29, 1998).
Metwally, A., et al., “Duplicate Detection in Click Streams”, Depart-
ment of Computer Science, University of California at Santa Barbara,
(2005).

Unknown, “American National Standard for Financial Services—
ANS X9.100-160-1-2004 (formerly published as ANS X9.13 Part 1:
Placement and Location of Magnetic Ink Printing (MICR)”, Ameri-
can National Standards Institute, Oct. 15, 2004.

Unknown, “Financial Services Draft Standard for Trial Use—DSTU
X9.37-2003 Specifications for Electronic Exchange of Check and
Image Data”, Accredited Standards Committee X9, Inc., Mar. 31,
2003.

* cited by examiner

U.S. Patent Jul. 28, 2015 Sheet 1 of 9 US 9,092,447 B1

100

110
Check Accounting Data
Received

l

115
Check Accounting Data
Extracted, and Normalized

|

120
Create String of Characters

'

125
Apply Function to String

I

130
Identify Suspected
Duplicates

h 4

135
Review Suspected
Duplicates

FIG. 1

U.S. Patent

Jul. 28, 2015

00

Sheet 2 of 9

210
Normalize
Aux On-Us,
RT, On-Us
And Amount

b A

215
Compute
Byte and Bit
Address

Y

220
Read Bit From
Hash Table

225
Bit = First
Value?

230
Set Bit to First
Value In
Hash Table

h A

235
Return
Original
Bit Value

FIG. 2

US 9,092,447 B1

U.S. Patent

Jul. 28, 2015

Sheet 3 of 9

300

US 9,092,447 B1

302

Check File

Y

Check File
Receipt
Module

304

Accounting Data

Pro;:g;sor Extraction Moduie
308
Character String .
Creation Module Function Module
310 312

Qutput Module
314

User Interface
316

FIG. 3

Storage
Module
318

US 9,092,447 B1

Sheet 4 of 9

Jul. 28, 2015

U.S. Patent

ansnp pew ¥ "OIA
WIOAA uoidaaxg
|[enuey o1 ppy /ey
MIIARI
a1eondng wiayed
PIMoIlY A pney
ey Joy Boq
sesed
aeandnp
ajgemole
1o} azfjeuy
7 9y
{ N
8zy \
ananp
WiopA a1eadngg
SSEN O] PPY
e
ysodap
10 ‘Jape| yseo
‘apy oe2idnp
Io} ezhjeuy 9Ly 2454 / 80v , 90% 7o
_\ 4) .
224 junowy 'sn-uQ | (Bseqeleqy | esegeleq s|geL %Mwwwmw
‘LY ‘SN=Uo Xny swiay SWwialj iy uj HOISNIOXT 1 uone _a_mvMW
kg Kisnp way| a1esln Aenp ,M_W_w A
uoalng —
sieoydng 0oy
a(ge | YseH oLy

\ cov

US 9,092,447 B1

Sheet 5 of 9

Jul. 28, 2015

U.S. Patent

916 -

R
/Ifl.}.l'[.ll..il\l\\\

PLG
. [BLLINOT USEH UMD /

e\

paAes ssiqe Hmm.ﬂjx

S "OIA

9¢9 -

8IS 18I0 ©) SaYsEH

mnding 10N Jo 1adsng

8CS

T
(Jewinop yseH 1940

DOIAI9S 18]|14 WOOjE UMO(] INUS
0Es

A

S0IAIBG J9YI4 Woo|g uny
0gs

\

/

A

i ™
/I:[’.,{lll\.\\

\1]]!]1}][].‘1/
peAeg ssiqge] 1se

\1}{/

—

~Zlg

Y

201M18G Jal14 Woolg ezieniul
0LS

b=
o
Ty

\\\F

159nbay ul sway

T]
R

e
Jayj0) woll s8ysey
T T

U.S. Patent Jul. 28, 2015 Sheet 6 of 9 US 9,092,447 B1

600

————

610
Accounting Data Received

'

615
Accounting Data Extracted,
and Normalized

.

620
Create String of Characters

A 4

625
Apply Function to String

I

630
Identify Suspected
Duplicates

'

635
Review Suspected
Duplicates

FIG. 6

U.S. Patent

Jul. 28, 2015 Sheet 7 of 9

00

710
Normalize
Aux On-Us,
RT, On-Us
And Amount

Y

715
Compute
Byte and Bit
Address

h 4

720
Read Bit From
Hash Table

725
Bit = First
Value?

730
Set Bit to First
Value In
Hash Table

y

735
Return
Original
Bit Value

FIG. 7

A

US 9,092,447 B1

U.S. Patent

File
802

Jul. 28, 2015

Sheet 8 of 9

800

US 9,092,447 B1

File Receipt
Module

804

Processor
806

Accounting Data
Extraction Module
808

Character String
Creation Module
810

Function Module
812

Output Module
814

User Interface
818

FIG. 8

Storage
Module
818

US 9,092,447 B1

Sheet 9 of 9

Jul. 28, 2015

U.S. Patent

ansnp s 6 "DIA
NIOAA uondeaxg
jenue o} ppy / FANS
MBIAD
ajeondng waned
PRMOIY A prney
0e6 J0j B0
aleadnp
a|geMO||E
10} @zAeuy
;926
/
anann
WIOpA 1eondng
SSEW 0] ppY
- 026
BlED JBLI0
10 3)y sjeoidnp N
Jo} azf|euy . 806
: LB /
;918 / /
= - 216 y L/
e SJuBWS|g B1e(] 9seqEIR(] asegeEe(] uonoaleq
< SwWaj| SWalj iy U) .
Aq Aieno - Way atesly 3iealidng
A

usag
gjeoldnQ
|lgqe L yseH

: 906 v06 \
\\ \ 208
sjqel Sa2IMEg
uoISNoXT mmwwhmn_ 9
fisnp _%m_m>
006

oL8e

US 9,092,447 B1

1
METHOD AND SYSTEM FOR DUPLICATE
DETECTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application is a Continuation-in-Part of U.S.
patent application Ser. No. 13/616,099, filed on Sep. 14,
2012, entitled “Method and System for Duplicate Check
Detection,” which is a Continuation of U.S. patent application
Ser. No. 12/254,333, filed on Oct. 20, 2008, entitled “Method
and System for Duplicate Check Detection.” The disclosure
of these priority applications are hereby incorporated by ref-
erence in their entirety.

FIELD OF PREFERRED EMBODIMENTS

Exemplary embodiments relate generally to processing of
electronic data by a financial institution. More specifically,
exemplary embodiments are directed to a method and system
for detecting duplicate items during the processing of elec-
tronic data relating to transactions by a financial institution or
other entity.

BACKGROUND

Financial institutions, such as banks and credit unions,
process checks and other transaction related data. Larger
financial institutions may process a significant volume of
checks and transaction data. [tis possible, given the volume of
data, for multiple instances of the same check or transaction
to occur. In other words, duplicate copies of an imaged check
or transaction can exist. Duplicate checks and transactions
can also exist, for example, because of fraud, data processing
errors, and printing errors.

If duplicate instances of a check or a transaction exist, the
financial institution processes and posts each of the multiple
instances. This means that the same check or transaction is
paid out more than once. Such multiple payments lead to
accounting issues, service problems, customer dissatisfac-
tion, and losses due to fraud. Furthermore, such double pay-
ments or postings can be indicative of fraud.

It should be appreciated that duplicate checks and transac-
tions can be legitimate duplicates. For example, checks pre-
sented for return, re-presentment, or re-deposit are examples
of such cases. Other such instances may exist.

Financial institutions can employ various methods for
detection of such duplicate checks and transactions, typically
known as duplicate detection methods. These existing meth-
ods suffer from various drawbacks. For example, some cur-
rent methods for duplicate detection are performed manually.
Such manual detection methods include an operator compar-
ing current checks and transaction against an historical data-
base. This type of comparison is time consuming and expen-
sive. Further, operators make errors and miss duplicates.

These and other deficiencies exist.

SUMMARY OF THE PREFERRED
EMBODIMENTS

An embodiment of the present invention provides a com-
puter-implemented method for detecting duplicates, such as
for example duplicate transactions and checks. Transaction
data may be electronically received wherein the transaction
data may be accounting data associated with one or more
transactions and have one more components. One or more of
the components may be extracted from the transaction data

10

15

20

25

30

35

40

45

50

55

60

65

2

for each individual transaction. A string of characters based
on the one or more extracted components may be created. A
function may be applied to the account data and/or the string
wherein the function may compute a value based on the
transaction data and/or the string. An element may be selected
from a set where an index of the element corresponds to the
computed value. A transaction may be determined to be a
suspected duplicate if the element is in an altered state, such
as a first value. A determination that the transaction may not
be a duplicate may be made if the element is in an initialized
state, such as an initial value. The element may be modified
for processing of further transactions by altering a state of the
element.

The comparison may be performed by creating a hash
value from the transaction data string based on the one or
more components using a hash function. The hash value may
be used to calculate a bit and byte address of a single bit entry
in a hash table. The value of the bit so addressed in the hash
table may be read. If the bit is equal to a first value, an
identification or flag may be attached to the transaction data
string identifying the string as a suspected duplicate. If the bit
is equal to the initial value, a different identification or flag
may be attached to the hash string identifying the transaction
data string as one that has never been processed during the
period that the table has been in use. Finally, the bit addressed
in the hash table may then be set to the first value to signify to
further processing that a transaction with a string hashing to
that address has already been processed. According to an
exemplary embodiment, so long as the bits in the table may be
initialized to the initial value, and so long as the ratio of bits in
the table is a multiple of the transactions to be processed, the
probability that a transaction will be called a suspect dupli-
cate falsely may be one over the multiple. In this example,
false negatives may be minimized. To decrease the false sus-
pect rate for a given table size, or to minimize table size for a
given number of transactions, the hash table may use a Bloom
filter. The Bloom filter may use at least two hash functions.

Exemplary embodiments include a system for detecting
duplicate transactions having at least one processor; a
memory comprising computer-readable instructions which
when executed by the processor cause the processor to per-
form the following steps: receiving electronic data that com-
prises accounting data associated with one or more transac-
tions; processing the electronic data to extract the accounting
data; creating a character string from a subset of the account-
ing data for each of the one or more transactions; applying a
Bloom filter using four hash functions to the character string;
determining that a transaction is a potential suspected dupli-
cate if each bit value read is equal to a first value; determining
that the transaction is not a suspected duplicate if at least one
bit value is not equal to the first value; outputting a listing of
each potential suspected duplicate; and performing additional
processing on each potential suspected duplicate to determine
if the potential suspected duplicate is a true duplicate. Exem-
plary embodiments include a method for detecting duplicate
transactions having the following steps: receiving electronic
data that comprises accounting data associated with one or
more transactions; processing the electronic data to extract
the accounting data; creating a character string from a subset
of the accounting data for each of the one or more transac-
tions; applying a Bloom filter using four hash functions to the
character string; determining that a transaction is a potential
suspected duplicate if each bit value read is equal to a first
value; determining that the transaction is not a suspected
duplicate if at least one bit value is not equal to the first value;
outputting a listing of each potential suspected duplicate; and
performing additional processing on each potential suspected

US 9,092,447 B1

3

duplicate to determine if the potential suspected duplicate is a
true duplicate. One or more of the method steps are performed
by at least one processor.

Advantages of this invention in addition to those described
above are apparent from the following detailed description of
the preferred embodiment of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart of a method of duplicate check
detection in accordance with an exemplary embodiment.

FIG. 2 is a flow chart of a method of duplicate detection
using a hash function for duplicate check detection in accor-
dance with an exemplary embodiment.

FIG. 3 is a system for duplicate detection in accordance
with an exemplary embodiment.

FIG. 4 is an exemplary method for implementation of a
duplication detection system in accordance with an exem-
plary embodiment.

FIG. 5 is an exemplary method of using a Bloom filter for
duplication detection in accordance with an exemplary
embodiment.

FIG. 6 is a flow chart of a method of duplicate transaction
detection in accordance with an exemplary embodiment.

FIG. 7 is a flow chart of a method of duplicate detection
using a hash function for duplicate transaction detection in
accordance with an exemplary embodiment.

FIG. 8 is a system for duplicate detection in accordance
with an exemplary embodiment.

FIG. 9 is an exemplary method for implementation of a
duplication detection system in accordance with an exem-
plary embodiment.

These and other embodiments and advantages will become
apparent from the following detailed description, taken in
conjunction with the accompanying drawings, illustrating by
way of example the principles of the various exemplary
embodiments.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

It will be readily understood by those persons skilled in the
art that the embodiments of the inventions are susceptible to
broad utility and application. Many embodiments and adap-
tations of the embodiments of the inventions other than those
herein described, as well as many variations, modifications
and equivalent arrangements, will be apparent from or rea-
sonably suggested by the embodiments of the inventions and
foregoing description thereof, without departing from the
substance or scope of the invention.

Accordingly, while the embodiments of the inventions
have been described here in detail in relation to its exemplary
embodiments, it is to be understood that this disclosure is
illustrative and exemplary of the embodiments of the inven-
tions and is made to provide an enabling disclosure of the
invention. Accordingly, the subsequent disclosure is not
intended to be construed or to limit the embodiments of the
inventions or otherwise to exclude any other such embodi-
ments, adaptations, variations, modifications and equivalent
arrangements. While the various embodiments of the present
inventions are described in the context of check processing,
the duplicate detection methods described herein may be
applied to other items, such as documents, to perform dupli-
cate detection.

An embodiment of the present invention is directed to
detecting improper multiple instances of a check. For
example, an embodiment of the present invention may ensure

10

15

20

25

30

35

40

45

50

55

60

65

4

that on-us checks are not posted more than once and transit
checks are not presented more than once to another financial
institution for collection. An embodiment of the present
invention also recognizes that the same item may be legiti-
mately processed multiple times for valid reasons, such as
return, re-presentment or re-deposit. In addition, some check
writers may create legitimate duplicates.

An embodiment of the present invention is directed to
detecting improper multiple instances of a transaction. For
example, an embodiment of the present invention may ensure
that multiple instances of a transaction are not posted. The
transactions may be of a variety of types including, but not
limited to, bankcard transactions, including credit and PIN
and non-PIN debit transactions, ACH payments, including
credit and debit transactions, rewards transactions, securities
transactions, and wire transfers. Each of these transactions
has a group of electronic data elements that can be used by the
methods described above to detect suspected duplicate trans-
actions.

An embodiment of the present invention may implement a
hash routine to automate the processing of detecting dupli-
cates. Other routines may be used as well. For example, a hash
table may be used for screening the checks and other elec-
tronic data. In an exemplary embodiment of the present
invention, a single bit hash table may be used. For each new
check or transaction, the system may concatenate the various
data elements associated with the check or transaction into a
normalized string. These fields may be extracted from the
MICR data associated with the check or from the electronic
data elements associated with the transaction. The elements
may be a subset of the MICR data or the electronic data
elements. The resulting string may then be hashed to a bit-
address in a range about 100 times, for example, the expected
volume of checks or transactions. According to one exem-
plary embodiment, if the bit in the table at that address is an
initialized or initial value (e.g., 0), the item may not have been
seen before. If the bit in the table at that address is an altered
or first value (e.g., 1), the item may have been seen before, so
a query to a database of already processed checks and trans-
actions may be performed to determine whether the present
check or transaction is a duplicate of one already received
before insertion of the new check or transaction data. The
initial bit value may then be set to the first value (e.g., 1) so if
the bit address arises again, then it is known to have been
possibly seen before. The query of the database of already
received check and transactions may be omitted before the
insertion of the present check or transactions. With a bit
address range 100 times the number of checks or transactions
being processed, the query may be omitted for more than 99%
of the checks and transactions. Omitting the query of the
database before insert may result in a substantial savings in
computing resources. Any hash that results in a uniform dis-
tribution of the mapping of items into the address space can be
used. Preferably, a single bit hash function may be used for
speed and economy of computing resources. Filters, such as
Bloom filters, may be implemented with multiple hash func-
tions. For example, 4 single bit hash functions may be incor-
porated into the Bloom filter. Each single bit from each hash
function may equal a first value to designate the check or
transaction as a suspected duplicate. An important advantage
may be that the hash table may be small enough to fit into
RAM on the servers, and therefore efficient duplicate detec-
tion may be performed using the memory of the server, even
with processing tens of millions of checks and transactions.
This may obviate the need to access databases or files on disk,
which may be slow and expensive. Duplicate detection may
be performed between paper and imaged checks and paper

US 9,092,447 B1

5

and electronic transaction data. Duplicate detection may fur-
ther be performed between checks and Account Clearing
House (ACH) transactions that were originally in the form of
checks, but converted to ACH at a point of sale, a back office
conversion, or an accounts receivable conversion. Duplicate
detection may further be performed between different types
oftransactions. It should be appreciated that different systems
may be used for duplicate detection of different items. For
example, one system may handle checks and another system
or systems may handle transaction data.

Duplicate detection for checks will first be described with
respect to FIGS. 1-5. Then duplicate detection for transaction
data will be described with respect to FIGS. 6-9. It should be
appreciated that while these embodiments are described sepa-
rately, they may be combined.

A need exists to efficiently detect duplicate checks early in
the processing cycle using a single detection process. Such
duplicate detection can ensure that checks are not posted
twice to an account or presented twice to another financial
institution for collection. Furthermore, the method of dupli-
cate detection needs to be efficiently scalable to volumes of a
few tens of millions of checks per day without requiring a
massive investment in database software, disk storage hard-
ware and processors to support a large number of database
searches per second.

An embodiment of the present invention is directed to
duplicate check resolution. Many suspect checks may be
resolved (e.g., determined if they are suspect) by querying a
database using a query on the combination of certain check
accounting data fields, such as those found in the MICR data
or other such similar data. For example, the aux on-us, RT,
on-us, amount, and other fields may be used. If the MICR or
other such similar data is identical or substantially similar, the
system may then (1) determine whether the check has been
returned and is being re-deposited or re-presented; (2) com-
pare the check with controlled disbursement RT checks (and
accounts); and/or (3) compare the check with a table of
RT/on-us field values that are known to be legitimate dupli-
cates. If the suspect check is not resolved by the automated
process, a case for manual resolution may be created in reme-
diation workflow. Other resolutions for suspect checks may
be implemented.

FIG. 1 depicts a flow chart of a method of duplicate check
detection of an exemplary embodiment. Exemplary method
100 is provided by way of example, as there are a variety of
ways to carry out the methods disclosed herein. The method
100 as shown in FIG. 1 may be executed or otherwise per-
formed by one or a combination of various systems, such as a
computer implemented system. Each block shown in FIG. 1
represents one or more processes, methods, and/or subrou-
tines carried out in the exemplary method 100. Each block
may have an associated processing machine or the blocks
depicted may be carried out through one processor machine.
Input may be desired from a user during various parts of the
below described method, the input may be accomplished
through a user interface. Referring to FIG. 1, the exemplary
method 100 may begin at block 110. At block 110, a check
file, containing check accounting data, may be received. At
block 115, elements of the check accounting data may be
extracted and normalized. At block 120, a string of characters
may be created. Atblock 125, a function may be applied to the
string. At block 130, suspected duplicates may be identified.
At block 135, the suspected duplicates may be reviewed.
These steps will be described in greater detail below.

While the method of FIG. 1 illustrates certain steps per-
formed in a particular order, it should be understood that the
embodiments of the present invention may be practiced by

10

15

25

40

45

6

adding one or more steps to the processes, omitting steps
within the processes and/or altering the order in which one or
more steps are performed.

At block 110, a check file may be received by a financial
institution or other entity. The financial institution may be a
bank, credit union, or other such related entity. The check file
may include accounting data and, optionally, images of more
than one check. The checks may be in a standard format
wherein the standard format is used by the other institutions to
facilitate and standardize the exchange of data and images.
For example, an image format, such as X9.37 may be used.
The X9.37 image file is a current standard format which uses
TIFF based images of the checks along with their associated
data. It should be appreciated that other formats and/or com-
binations of formats may be used.

The check file may be received by the financial institution
through a processing system. Various processing systems
may be used. The check file may contain information pertain-
ing to one or more checks. Such information may include
check accounting data and/or other data. Check accounting
data may be contained in magnetic ink printing, such as
MICR. In the exemplary X9.37 format, this data may be
contained in the Type 25 record as aux on-us, RT, on-us, and
amount data fields. It should be appreciated that other such
formats may be used for check accounting data.

At block 115, elements of the check accounting data may
be extracted and normalized. For example, certain elements
of the MICR data may be extracted. According to an exem-
plary embodiment, elements to extract may be chosen
because they may represent unique information to that par-
ticular check. For example, fields representing the aux on-us
code, the routing and transit number, on-us code, and amount
of'the check (e.g., fields 2, 4, 6, and 7 of the Type 25 record)
may be extracted from the MICR data. These fields may be
used because they are part of the MICR and represent fields
within the MICR standard that typically vary from check to
check. It should be appreciated that other fields and/or com-
binations of fields may be used. In an exemplary embodiment,
non-numeric characters, such as letters and symbols, may be
eliminated from the string to normalize it. It should be appre-
ciated that the normalization of data elements may be
extended to allow detection of duplicates between paper
checks, imaged checks, IRDs, checks converted to ACH
transactions, and other payment instruments.

At block 120, a string of characters may be created in a
form which standardizes the data and removes variations due
to differences in the prior capture and data processing systems
in order to allow a valid comparison among checks received
from different sources. For example, the string of characters
may be created at least in part from the elements extracted in
block 115. Because the string of characters may be normal-
ized according to an exemplary embodiment, the string cre-
ated may be numeric in content. The string may then be
created by concatenating the extracted fields. Such a string
may have a resulting length, such as length .. For example,
selected record fields may be extracted from the MICR data,
as discussed above, any non-numeric characters may be
squeezed out, and then any remaining numeric characters
may be combined into a string which may have a length L. It
should be appreciated that other strings or combination of
data fields may be created.

At block 125, a function may be applied to the string from
block 120. The function may be any suitable function to
reduce the string to one of a set of elements, e.g., a set of
ordered values which may be used as an index to a set of
Boolean objects. The function may be a mathematical func-
tion that converts the data, such as the string of characters,

US 9,092,447 B1

7

into an integer, such as a uniformly distributed pseudorandom
integer, which may serve as an index into an array, such as an
array of bits. According to certain applications, a hash table
including individually addressed bits may be preferred based
upon its small size (relative to computer memory require-
ments) and ability to provide fast and efficient screening of
data. If such a table is initially filled with a value in an
initialized state, or initial value, such as “0”, and the bits are
set to an altered state, such as a first value, e.g. “1”, when
addressed, a new check can be determined to not be a suspect
duplicate if the bit addressed was not equal to the first value,
since no check that is hashed to that address has been previ-
ously processed. In an exemplary embodiment, a single bit
hash table may be used. For example, the single bit may be a
first value, such as “1”, and the initial value, such as “0”. Use
of a single bit hash table may mean the table may be of a
small, efficient size to allow use in the memory of a server
without the need to use disk space or perform look-ups in a
database table.

According to an exemplary embodiment, a filter, such as a
Bloom filter may be used. A Bloom filter is a data structure
that may be used to test for membership of elements in a
particular group. A Bloom filter may generate false positives
and not false negatives. The accuracy of the Bloom filter may
be improved by using multiple functions, such as hash func-
tions. The Bloom filter may provide a smaller table size. As a
result, the table of values takes up less computer memory
space. The use of'a Bloom filter may significantly increase the
accuracy of the function for identifying suspected duplicates.
For example, a Bloom filter using two or more hash functions
may be used. In an exemplary embodiment of the present
invention, a Bloom filter using four hash functions resulting
in four single bit hash tables may be used.

At block 130, suspected duplicates may be identified. For
example, the suspected duplicates may be identified based on
a comparison of the dataset obtained by applying a function,
such as the hash function, in block 125. If two datasets have
matching characters or are considered substantially similar,
then the two checks that the data was extracted from may be
considered duplicates. Such suspected duplicates may be
flagged for further review. The dataset may be compared
against a dataset which may include other check data from a
pre-determined time period. A pre-determined time period
may be selected to allow a comparison with historical data
wherein a duplicate of a particular check may be reasonably
found. For example, a previous number of weeks, such as the
previous four weeks, of processed checks may be used. Other
time periods of data may be used.

In one embodiment, an element may be selected from a set
where an index of the element may correspond to the com-
puted value from the function applied in block 125, such as a
hash function. The set may be an array. The check may be
determined to not be a duplicate if the element is in an ini-
tialized state, such as “0”. The check may be determined to be
a suspected duplicate if the element is in an altered state, such
as “1”. Following the determination, if the element was in the
initialized state, the state of the element may be modified such
that it may be in the altered state.

At block 135, the suspected duplicates may be reviewed.
Such a review may be performed as an additional check to
confirm that the checks are indeed duplicates. This review
may also identify false-positives. It should be appreciated that
suspected duplicates identified by the function in block 120
may be a random collision of values. A random collision of
values may occur if the string and another string happen to
result in the same hash value, but in reality are not duplicates.
In an exemplary embodiment, the review of the suspected

5

10

15

20

25

30

35

40

45

50

55

60

65

8

duplicates may be manually conducted by an operator. The
operator may compare the suspected duplicates against a
historical database of checks processed within a pre-deter-
mined period of time. For example, the suspected duplicates
may be compared against checks processed within the last
year or other predetermined time periods. In some embodi-
ments, the review may also be automated with minimal or no
operator intervention.

FIG. 2 depicts a flow chart of a method using a hash
function for duplicate check detection in an exemplary
embodiment. Exemplary method 200 is provided by way of
example, as there are a variety of ways to carry out the
methods disclosed herein. The method 200 as shown in FIG.
2 may be executed or otherwise performed by one or a com-
bination of various systems, such as a computer implemented
system. Each block shown in FIG. 2 represents one or more
processes, methods, and/or subroutines carried out in the
exemplary method 200. Each block may have an associated
processing machine or the blocks depicted may be carried out
through one processor machine. Input may be desired from a
user during various parts of the below described method, the
input may be accomplished through a user interface. Refer-
ring to FIG. 2, the exemplary method 200 may begin at block
210. At block 210, check data may be normalized. At block
215, a byte and bit address may be computed. At block 220, a
bit may be read from the hash table At block 225, a check may
be performed to determine if the bit value equals a first value.
At block 230, the bit may be set to the first value in the hash
table. At block 235, the original bit value is returned. These
steps will be described in greater detail below.

While the method of FIG. 2 illustrates certain steps per-
formed in a particular order, it should be understood that the
embodiments of the present invention may be practiced by
adding one or more steps to the processes, omitting steps
within the processes and/or altering the order in which one or
more steps are performed.

At block 210, check data may be normalized. The normal-
ization of the check data may include extraction of certain
check accounting data, creating a string of characters from the
extracted data, and normalizing the string through the use of
a suitable function. The first step in normalization may
involve extracting elements of the check accounting data.
Certain fields may be extracted from the MICR data on the
bottom of a check or from the type 25 record in the X9.37
check image file. For example, certain elements of the MICR
data may be extracted. According to an exemplary embodi-
ment, these certain elements to extract may be chosen since
they may represent unique information to that particular
check because they represent fields within the MICR standard
that typically vary from check to check. For example, fields
representing the aux on-us code, the routing and transit num-
ber, on-us code, and amount of the check (e.g., field 2, 4, 6,
and 7 of the X9.37 Type 25 record) may be extracted from the
MICR data. It should be appreciated that other fields and/or
combinations of fields may be used.

Next, a string of characters may be created from the
extracted MICR data. In an exemplary embodiment, non-
numeric characters, such as letters and symbols, may be
eliminated from the string. Therefore, according to an exem-
plary embodiment, the string created may be numeric in
content. The string may then be created by concatenating the
extracted fields. Such a string may have a resulting length,
such as length L. For example, selected record fields may be
extracted from the MICR data, as discussed above, any non-
numeric characters may be squeezed out, and then remaining
numeric characters may be combined into a string which has

US 9,092,447 B1

9

a length L. It should be appreciated that other strings or
combination of data fields may be created.

Then, a function may be applied to the string to normalize
it into a suitable format for indexing, sorting, and/or compar-
ing to other such strings in an efficient manner. The function
may be any suitable function to reduce the string to one of a
set of ordered values which may be used as an index to a set
of Boolean objects. Such a function may be a mathematical
function that converts the data, such as the string of charac-
ters, into an integer, such as a uniformly distributed pseudo-
random integer, which may serve as an index into an array,
such as an array of bits. According to certain applications, a
hash table including individually addressed bits may be pre-
ferred based upon its small size (relative to computer memory
requirements) and ability to provide fast and efficient screen-
ing of data. If such a table is initially filled with a initial value,
such as “0”, and the bits are set to an altered, or first value,
such as “1”, when addressed, a new check can be determined
to not be a suspect duplicate if the bit addressed was not equal
to the first value, since no check that is hashed to that address
has been previously processed. In an exemplary embodiment,
a single bit hash table may be used. For example, the single bit
may be a first value, such as “1”, and the initial value, such as
“0”. Use of a single bit hash table may mean the table may be
of'a small, efficient size to allow use in the memory of a server
without the need to use disk space or perform look-ups in a
database table.

According to an exemplary embodiment, a filter, such as a
Bloom filter may be used. A Bloom filter is a data structure
that may be used to test for membership of elements in a
particular group. A Bloom filter may generate false positives
and not false negatives. The accuracy of the Bloom filter may
be improved by using multiple functions, such as hash func-
tions. The Bloom filter may provide a smaller table size. As a
result, the table of values takes up less computer memory
space. The use of'a Bloom filter may significantly increase the
accuracy of the function for identifying suspected duplicates.
For example, a Bloom filter using two or more hash functions
may be used. In an exemplary embodiment of the present
invention, a Bloom filter using four hash functions resulting
in four single bit hash value addresses may be used. In this
exemplary embodiment, in order to qualify as a suspected
duplicate, the four bits addressed by the hash values should be
equal to the altered or first value. In alternative embodiments,
other bit size hash functions may be used and divided up into
a number of smaller size function. For example, a 128-bit
hash function may divided up into four 32-bit functions.

In an exemplary embodiment, the following hash function
may be used. It should be appreciated that the following is a
mere example and should not be construed to limit the various
embodiments of the present invention in any manner. The
following is purely illustrative. In this example, L is equal to
the string length. The result of the hash function is a hash
value which is entered in a hash table. In the following
example, showing the Jenkins One-at-a-Time hash algorithm,
a 64-bithashvalueis used. Other algorithms and bit sizes may
be used as are known in the art. For example, a 128-bit MD5
algorithm may be used.

for (i=0; i<L; i++) {

hash+=MICR[i];

hash+=(hash<<10);

hash "=(hash>>6);,

hash+=(hash<<3);
hash "=(hash>>11);
hash+=(hash<<15);
return hash.

5

10

15

20

25

30

35

40

45

50

55

60

65

10
At block 215, the byte and bit address may be computed.
The bit address may be of the hash value calculated above. In
some embodiments, another bit address may be used. This bit
address may be 3-bit address of the bit within a byte. The
following is an example calculation of the bit address:

bitaddress=hash & 0x7.

Other bit addresses may be used.

The byte address may vary depending upon the hash table
size. For example, a 4 Gigabyte table will have a 32-bit
address. The following is an example of calculation of the
byte address:

byteaddress=(hash>>3) & OxFFFFFFFFE

Other byte addresses may be used. In general, for a table of N
bytes, byteaddress=(hash>>3) % N, where % is the modulo
operator that returns the remainder of division by N.

At block 220, the bit may be read from the hash table. The
bit may be read from the hash table to determine if it is unique.
For example, if the bit equals to a first value, such as 1, then it
may be a suspected duplicate. If the bit equals a second value,
such as 0, then it may not be a duplicate. It should be appre-
ciated that other such bit combinations may be used based on
the structure of the hash table. An example of an expression
which reads a single bit from the hash table is:

bit=(table[byteaddress]>>bitaddress) & 1.

Other bit functions may be used.

Atblock 225, a check may be made whether the bit is equal
to a first value, such as 1. The suspected duplicates may be
those with a bit value equal to the first value.

At block 230, the bit may be set to the first value in hash
table. This may be performed if the bit does not equal the first
value (e.g., it is equal to a second value, such as 0). The bit
may be set for a future comparison and to mark the bit as being
used. For example, by marking the bit with a first value allows
for a comparison with another batch of check data such that
another computed bit with the same address will then show up
as a suspected duplicate. An example of an expression for
setting a bit in the hash table is:

table[byteaddress]|=1<<bitaddress.

Other functions may be used.

At block 235, the original bit value may be returned. If the
bit was equal to the first value in block 225, then the method
may proceed to this step. The original bit value may be
returned to identify the suspected duplicate checks for further
analysis. If the bit value was equal to the first value, then the
check may be considered a suspected duplicate.

FIG. 3 is a duplicate detection system, according to an
exemplary embodiment of the present invention. System 300
may provide various functionality and features associated
with duplicate detection. More specifically, system 300 may
include a check file receipt module 304, a processor 306, an
accounting data extraction module 308, a character string
creation module 310, a function module 312, an output mod-
ule 314, a user interface module 316, and a storage module
318. While a single illustrative block, module or component is
shown, these illustrative blocks, modules or components may
be multiplied for various applications or different application
environments. In addition, the modules or components may
be further combined into a consolidated unit. The modules
and/or components may be further duplicated, combined and/
or separated across multiple systems at local and/or remote
locations. For example, some of the modules or functionality
associated with the modules may be supported by a separate
application or platform. Other implementations and architec-

US 9,092,447 B1

11

tures may be realized. It should be appreciated that system
300 may be a computer, such as a general purpose computer
which may include a processing machine which has one or
more processors. Such a processing machine may execute
instruction stored in a memory or memories to process the
data.

As noted above, the processing machine executes the
instructions that are stored in the memory or memories to
process data. This processing of data may be in response to
commands by a user or users of the processing machine, in
response to previous processing, in response to a request by
another processing machine and/or any other input, for
example. As described herein, a module performing function-
ality may comprise a processor and vice-versa.

A check file 302 may be input into the system 300. The
check file may be received by a financial institution. The
system 300 may represent a financial institution, such as a
bank, credit union, or other such related entity. In addition, the
system 300 may be a third party or other intermediary entity
in communication with a financial institution. In some
embodiments, the system 300 may represent a financial pro-
cessing system located at a financial institution. Other archi-
tectures and schemes may be realized. The check file may
include data corresponding to more than one check. The
check file may contain images of checks. The images may be
in a standard format wherein the standard format is used by
the other institutions to facilitate and standardize the
exchange of data. For example, an image format, such as
X9.37, may be used. The X9.37 image file is a format which
uses TIFF based images of the checks along with their asso-
ciated data. It should be appreciated that other formats may be
used for the check file.

The check file may be received by the financial institution
by a processing system. Various types of processing systems
may be used. The check file may contain various information
pertaining to one or more checks. Such information may
include check accounting data. Check accounting data may
be contained in the form of Magnetic Ink Printing, such as
MICR. For example, in the exemplary X9.37 format, this data
may be contained in the Type 25 record. The check file may
contain various types of checks, such as aux on-us, on-us, and
routing and transit. Other types of checks are possible. The
check accounting data may include aux on-us, RT, on-us, and
amount fields from the check MICR printing. Other types of
check accounting data may be possible.

A check file receipt module 304 may receive the check file
302. Check file receipt module 304 may be an input or routing
point in the system 300. For example, check receipt module
304 may be a router such that the check file 302 is received
and then sent to the proper module, such as the accounting
data extraction module 308, or other module for further pro-
cessing. The image receipt module 304 may store the check
file 302. For example, the check file 302 may be stored in
check file receipt module 304 while awaiting further process-
ing, the receipt of other check files, and/or other actions or
events. Check file receipt module 304 may process the check
file 302. For example, check file receipt module 304 may
combine two or more check files into one check file for further
processing in the system 300. The check file receipt module
304 may review the check file 302 to ensure it is in the proper
format for further processing in system 300. The check file
receipt module 304 may convert the check file 302 into a
proper format as preferred. In some embodiments, the check
file receipt module 304 may create an alert that may involve
user intervention in the event the check file 302 is not in the
proper format for processing, contains an error, or for other
reasons. In some embodiments, storage 318 may be used to

10

15

20

25

30

35

40

45

50

55

60

65

12

store the check file 302. It should be appreciated that the
check file receipt module 304 may make a back-up copy of
the check file 302 prior to any further routing or processing of
the check file. For example, such a back-up copy may serve as
an archive copy of the check file 302. Other uses are possible.
The back-up copy may be stored in storage 318 or other such
associated storage.

A processor 306 may be used for processing, calculating,
and/or organizing the data. Other functions may be performed
by the processor as desired. One or more processors may be
provided. The processor 306 is shown as a separate module in
FIG. 3, however in some embodiments, the processor 306
may be a distributed processor, such that the processor 306
may be distributed among the various modules shown in FI1G.
3. In other embodiments, the processor 300 may be shared
with other functionality within other modules (not shown)
that may be present in the system 300.

An accounting data extraction module 308 may extract
certain elements of the check accounting data. For example,
certain elements of the MICR data associated with a check
may be extracted. The accounting data may be extracted from
the check file 302. The accounting data may be extracted for
each check contained in the check file 302. According to an
exemplary embodiment, certain elements to extract may be
chosen because they may represent unique information to that
particular check. For example, fields representing the aux
on-us code, the routing and transit number, on-us code, and
amount ofthe check (e.g., field 2, 4, 6, and 7) may be extracted
from the MICR data. It should be appreciated that other fields
and/or combinations of fields may be used.

A character string creation module 310 may create a string
of characters based at least in part on the accounting data
extracted by the accounting data extraction module 308. For
example, the string of characters may be created from a subset
of'the elements extracted. In an exemplary embodiment, non-
numeric characters, such as letters and symbols, may be
eliminated from the string. Other types of filtering may be
applied. Therefore, according to an exemplary embodiment,
the string created may be numeric in content. The string may
then be created by concatenating the extracted fields. The
concatenated string may have a length, such as length L. For
example, selected record fields may be extracted from the
MICR data, as discussed above, any non-numeric characters
may be squeezed out, and then remaining numeric characters
may combined into a string which may have a length L. It
should be appreciated that other strings and/or combination
of data fields may be created.

A function module 312 may apply a function to the char-
acter string created by the character string creation module
310. A function may be applied to the string to normalize it
into a suitable format for indexing, sorting, and/or comparing
to other such strings in an efficient manner. The function may
be any suitable function to reduce the string to one of a set of
ordered values which may be used as an index to a set of
Boolean objects. Such a function may be a mathematical
function that converts the data, such as the string of charac-
ters, into an integer, such as a uniformly distributed pseudo-
random integer, which may serve as an index into an array of
bits. According to certain applications, a hash table including
individually addressed bits may be preferred based upon its
small size (relative to computer memory requirements) and
ability to provide fast and efficient screening of data. If such
a table is initially filled with a initial value, such as “0”, and
the bits are set to an altered, or first value, such as “1”, when
addressed, a new check can be determined to not be a suspect
duplicate if the bit addressed was not equal to the first value,
since no check that is hashed to that address has been previ-

US 9,092,447 B1

13

ously processed. In an exemplary embodiment, a single bit
hash table may be used. For example, the single bit may be a
first value, such as “1”, and the initial value, such as “0”. Use
of a single bit hash table may mean the table may be of a
small, efficient size to allow use in the memory of a server
without the need to use disk space or perform look-ups in a
database table.

According to an exemplary embodiment, a filter, such as a
Bloom filter may be used. A Bloom filter is a data structure
that may be used to test for membership of elements in a
particular group. A Bloom filter may generate false positives
and not false negatives. The accuracy of the Bloom filter may
be improved by using multiple functions, such as hash func-
tions. The Bloom filter may provide a smaller table size. As a
result, the table of values takes up less computer memory
space. The use of'a Bloom filter may significantly increase the
accuracy of the function for identifying suspected duplicates.
For example, a Bloom filter using two or more hash functions
may be used. In an exemplary embodiment of the present
invention, a Bloom filter using four hash functions resulting
in four single bit hash address values may be used. In this
exemplary embodiment, in order to qualify as a suspected
duplicate, the four bits addressed by the hash values should be
equal to the first value. In alternative embodiments, other bit
size hash functions may be used and divided up into a number
of'smaller size function. For example, a 128-bit hash function
may divided up into four 32-bit functions.

It should be appreciated that the function module 312 may
use the method described above in FIG. 2. Other such meth-
ods may be used to perform the duplicate detection of the
embodiments of the present invention.

An output module 314 may output the suspected duplicates
identified as a result of the application of the function in the
function module 312. The suspected duplicates may be iden-
tified based on a comparison of the dataset obtained by apply-
ing the function, such as the hash function, described above in
the function module 312. For example, if two datasets have
matching characters or are considered substantially similar,
then the two checks that the data was extracted from may be
considered suspected duplicates. Such suspected duplicates
may be flagged for further review. The dataset may be com-
pared against a dataset which may include other check data
from a pre-determined time period. A pre-determined time
period may be selected to allow a comparison with historical
data wherein a duplicate of a particular check may be reason-
ably found. For example, a previous number weeks, such as
the previous four weeks, of processed checks may be used.
Other such time periods of data may be used. The output
module may provide an output in various formats. An alert on
a display (not shown) may be output. The alert may be visual
in nature. Such a visual alert may be in any suitable format,
such as graphics, text or a combination thereof. Audio alerts
may be used. An audio alert may include a speaker capability
to provide a way to output the sound associated with the audio
alert. The output may be a printout, printed to a printer (not
shown) attached to the output module 314. A combination of
outputs may be used. The suspected duplicate listing may be
stored in storage, such as storage 318.

A user interface 316 may allow a user to interact with the
system 300. The user interface 316 may allow the user to
review the output from the output module 314. The user
interface module 316 may provide a suitable interface for the
user, such as a graphical user interface (GUI). User input to
the system 300 through the user interface module 316 may be
completed through such input devices as a keyboard, a touch
screen, a trackwheel, or any other input means, as is known in
the art.

10

15

20

25

30

35

40

45

50

55

60

65

14

A storage module 318 may provide storage of data associ-
ated with system 300. The storage 318 may include any
suitable storage device for the data from the system 300 and
its associated modules. While a single storage module is
shown for illustrative purposes, storage 318 may include mul-
tiple data storage devices at one or multiple locations. The one
or more data storage devices may be operatively associated
with individual modules in the system 300. Storage 318 may
be local, remote, or a combination thereof with respect to the
system 300. Storage 318 may utilize a redundant array of
disks (RAID), striped disks, hot spare disks, tape, disk, or
other computer accessible storage. In one or more embodi-
ments, storage 318 may be a storage area network (SAN), an
internet small computer systems interface (iSCSI) SAN, a
Fibre Channel SAN, a common Internet File System (CIFS),
network attached storage (NAS), or a network file system
(NFS). The storage 318 may have back-up capability built-in.
Communications with the system 300 may be over a network,
such as a local area network or communications may be over
a direct connection to the system 300. Data may be transmit-
ted and/or received from the system 300. Data transmission
and receipt may utilize cabled network or telecom connec-
tions such as an Ethernet RJ45/Category 5 Ethernet connec-
tion, a fiber connection, a traditional phone wireline connec-
tion, a cable connection or other wired network connection. A
wireless network may be used for the transmission and receipt
of data.

FIG. 4 is an exemplary method for implementation of a
duplication detection system in accordance with an embodi-
ment of the present invention. FIG. 4 depicts a flow chart of a
method of duplicate check detection of an exemplary embodi-
ment. Exemplary method 400 is provided by way of example,
as there are a variety of ways to carry out the methods dis-
closed herein. The method 400 as shown in FIG. 4 may be
executed or otherwise performed by one or a combination of
various systems, such as a computer implemented system.
Each block shown in FIG. 4 represents one or more processes,
methods, and/or subroutines carried out in the exemplary
method 400. Each block may have an associated processing
machine or the blocks depicted may be carried out through
one processor machine. Input may be desired from a user
during various parts of the below described method, the input
may be accomplished through a user interface.

Referring to FIG. 4, the exemplary method 400 may begin
atblock 402. A block 402, a check file may be received from
a processing system. A block 404, the file may be validated
and parsed. At block 406, a routing/transit and/or account
exclusion table may be checked. At block 408, a determina-
tion may be made whether duplicate detection may be
desired. At block 410, if duplicate detection should be per-
formed, a hash table duplication screen may be performed. At
block 412, a check may be identified as a duplicate suspect. At
block 414, if the check image is not considered a duplicate
suspect, then an item may be created in a database. At block
416, a database may be accessed. At block 418, a query may
be performed for specific types of checks. At block 420, a
determination may be made for a duplicate MICR. At block
422, an analysis may be performed of the duplicate MICR. At
block 424, a determination is made of a mass duplicate. At
block 426, the mass duplicate may be added to a duplicate
work queue. At block 428, an analysis for allowable dupli-
cates may be performed. At block 430, a determination may
be made of an allowed duplicate. At block 432, the allowed
duplicate may be logged for a fraud pattern review. At block
434, a manual exception work queue entry may be added.
These steps will be described in greater detail below.

US 9,092,447 B1

15

While the method of FIG. 4 illustrates certain steps per-
formed in a particular order, it should be understood that the
embodiments of the present invention may be practiced by
adding one or more steps to the processes, omitting steps
within the processes and/or altering the order in which one or
more steps are performed.

Atblock 402, a check file may be received from a process-
ing system. The processing system may be a Virtual Process-
ing Center (VPC) Generation 2 processing system or other
processing system for financial data, such as check data. It
should be appreciated that other such systems may be used.
The check file may be in a particular format, such as X9.37, as
discussed above. It should be appreciated that other such
check formats may be used. The X9.37 and VPC are used are
illustrative examples to show the operation of an exemplary
embodiment. The check file may contain the images of one or
more checks and the check’s associated accounting data. The
check file may contain the check accounting data for one or
more checks. Such check data may be processed by the finan-
cial institution. The check data may contain information per-
taining to different check types such as on-us, aux on-us,
routing/transit (RT), and amount. Other such check types may
be possible as are known in the art. According to an exem-
plary application, the method depicted may be performed on
each individual check contained in the check file. In another
example, groups of checks may be processed. The method
depicted in the following blocks may be performed following
receipt of the check file by the financial institution. For
example, the duplicate detection processing may occur fol-
lowing check receipt prior to any accounting processing or
other such processing by the financial institution. This may be
an advantage because duplicates may be detected and sepa-
rated early in the processing chain.

At block 404, the check file may be validated, parsed,
and/or otherwise processed. The check file may be processed
to extract the check accounting data for the one or more
checks in the check file. The accounting data may be extracted
from the MICR data of each check. Specifically, certain fields
from the accounting data may be extracted, such as the fields
representing the aux on-us code, the routing and transit num-
ber, on-us code, and amount of the check (e.g., field 2, 4, 6,
and 7 of the X9.37 Type 25 record) may be extracted from the
MICR data. These extracted accounting fields may be vali-
dated. During validation, if errors are found in the check file,
corrections may be performed automatically. In some
embodiments, an operator may be alerted to the error and
manual intervention may be performed to correct the error. In
addition, a combination of automatic and manual error cor-
rection may be performed. Other variations may be realized.
Itshould be appreciated that processing may be applied on the
extracted accounting data to alter the format into an accept-
able format for the processing system. For example, a foreign
check may contain fields, such as the RT field, that are for-
matted in a different manner than those upon a United States
check.

At block 406, a query may be performed of an exclusion
table. Such a query may be performed to check if the duplicate
detection should be performed for each check or group of
checks contained in the image file. Some checks or groups of
checks may be excluded from duplicate detection for various
reasons as would be appreciated in the art. Such exclusions
may save processing time and resources by preventing unnec-
essary processing, for example. Excluded items may include
certain RT numbers, account numbers, or combinations
thereof. For example, checks which lack serial number infor-

25

30

35

40

45

16

mation, such as refund or rebate checks, may be excluded
because these types of checks may be known to cause a high
rate of suspected duplicates.

At block 408, a determination may be performed as to
whether duplicate detection should be performed. Such a
determination may depend, at least in part, on the results of
block 406. Additionally, other such reasons may exist
wherein a check may not be subject to the duplication detec-
tion method. If duplicate detection should be performed, then
the method may proceed to block 410. If no duplicate detec-
tion is performed, then the method may proceed to block 414.

At block 410, a hash table duplicate screening may be
performed. The hash table duplicate screening may be per-
formed to identify suspected duplicates. Such a hash table
duplicate screening is described in FIG. 2 above. It should be
appreciated that other such methods for screening are pos-
sible, such as using a Bloom filter as described above and in
FIG. 5.

At block 412, duplicate suspects may be identified. The
duplicate suspects may be those checks whose hash values
match that of at least one other check. The collision of the
hash values may be indicative of a duplicate check since the
hash value is computed from certain MICR fields which make
up the accounting data associated with a particular check. It
should be appreciated that there may be one or more duplicate
suspects identified.

Atblock 414, an item may be created in an items database.
The items database may contain information regarding the
checks processed in the system. The information may have
item information pertaining to a predetermined period of
time. For example, the items database may contain informa-
tion pertaining to the checks processed during a predeter-
mined period of time by the financial institution. Block 414
may receive inputs from block 408, if no duplicate detection
is performed. Block 414 may receive inputs from block 412.
The input from block 412 may be the checks determined not
to be duplicate suspects which may include the checks that
passed the hash table screening since their values did not
collide with any other values present in the hash table during
the screening. It should be appreciated that checks that may
be duplicate suspects may not be added to the items database
at this stage. Block 414 may receive inputs from block 420
and 432 as will be described below.

Block 416 represents the items database, which may
include any suitable data structure to maintain the informa-
tion and allow access and retrieval of the information. For
example, the database may keep the data in an organized
fashion. The items database may be a database, such as an
Oracle database, a Microsoft SQL Server database, a DB2
database, a MySQL database, a Sybase database, an object
oriented database, a hierarchical database, a flat database,
and/or another type of database as may be known in the art.

The items database may be stored in any suitable storage
device. The storage may include one of more data storage
devices. The one or more data storage devices may be opera-
tively associated with the items database in block 416. The
storage may be local, remote, or a combination thereof with
respect to the database. The storage 416 may utilize a redun-
dant array of disks (RAID), striped disks, hot spare disks,
tape, disk, or other computer accessible storage. In one or
more embodiments, the storage may be a storage area net-
work (SAN), an internet small computer systems interface
(iSCSI) SAN, a Fibre Channel SAN, a common Internet File
System (CIFS), network attached storage (NAS), or a net-
work file system (NFS). The database may have back-up
capability built-in. Communications with the items database
may be over a network, such as a local area network or

US 9,092,447 B1

17

communications may be over a direct connection to the data-
base. Data may be transmitted and/or received from the items
database. Data transmission and receipt may utilize cabled
network or telecom connections such as an Ethernet RJ45/
Category 5 Ethernet connection, a fiber connection, a tradi-
tional phone wireline connection, a cable connection or other
wired network connection. A wireless network may be used
for the transmission and receipt of data.

Atblock 418, a query by aux on-us, RT, on-us, or amount
may be performed. The query may be performed on the one or
more duplicate suspects. The query may be performed in the
items database of block 416. This query may be automatically
or manually performed. A combination of automatic and
manual querying may be used. The query may be performed
to validate the duplicate suspects identified in block 412, to
ensure that the duplicate suspects are not a false positive. The
query is performed in the items database to provide a valida-
tion of the duplicate suspect when compared against a larger
subset of check data.

At block 420, a determination of duplicate data may be
performed. The duplicate data may be MICR data. For
example, from the query, it may be determined whether the
duplicate suspect has MICR data that matches another check
in the items database. If no duplicate MICR data is found,
then the duplicate suspect may not be a duplicate. If so, then
an entry into the items database may be performed at block
414 to provide an entry for potential future duplicate com-
parison. If duplicate MICR data is found in the items data-
base, then the method continues to block 422.

At block 422, the duplicate MICR data may be analyzed.
The analysis may be performed to determine if the check
represents a duplicate file, cash letter, deposit, or other instru-
ment. These types of files may be caused by operational or
system errors. For example, another bank may send a cash
letter with check data that is a duplicate of previously sent
check data. This analysis may allow determination of a poten-
tial pattern regarding resubmission of check data. A common
cause of duplicate checks may then be determined.

At block 424, a check for mass duplicates may be per-
formed. The check for mass duplicates may be performed to
identify a pattern of checks using the same data, such as the
same serial number. For example, an entity, e.g., companies,
financial institutions, etc., may issue checks with the same
MICR information, such as the same serial number and
amount. This may typically be seen in rebate checks. In other
words, mass duplicates may have a cause that is different
from the types identified in block 422.

Atblock 426, if a mass duplicate is found, an entry into the
mass duplicate work queue may be made. This entry may alert
the system to allow flagging of the mass duplicates in an
appropriate manner for further processing. In some embodi-
ments, this entry may add the identified mass duplicates into
the exclusion table that may preclude duplicate processing of
the identified mass duplicates, such as in block 406.

Atblock 428, an analysis may be performed for allowable
duplicate cases. As discussed above, in some cases, there may
be duplicate checks that are allowable. For example, a check
may be returned to the depositor or bank of first deposit, and
later re-deposited or re-presented.

At block 430, a decision if a duplicate is allowed may be
performed. If the duplicate is allowed, then the method pro-
ceeds to block 432. If the duplicate is not allowed, then
method continues to block 434.

At block 432, if the duplicate is allowed, a log entry for
fraud pattern may be made. Such a log entry may be made for
future use if the same check appears again. The log may be
analyzed for patterns of duplicate checks which indicate pos-

20

40

45

18

sible fraud by statistical analysis, displaying the log for
manual fraud review, or other actions. Further, following the
log entry, an entry may be made into the items database for
future comparison.

At block 434, if the duplicate is not allowed, a manual
exception may be added to the work queue. The manual
exception may be used to flag the duplicate. Such a flag may
ensure that no further processing of the check occurs. The
manual exception may be used to alert an operator to remove
the accounting data associated with the duplicate from the
X9.37 image file so that it is not processed. In some embodi-
ments, this removal of the data may be performed automati-
cally. The operator may review the duplicate suspect and
decide whether to allow the check to be posted or cleared to
the paying bank, to be returned to the depositor or bank of first
deposit, to be removed from the transaction processing
stream, or to be referred for fraud investigation. It is under-
stood that the operator may perform other processing at this
point. For example, the operator may enter account adjust-
ments to fix the impact of the duplicate check.

FIG. 5 is an exemplary method for implementation of a
duplication detection system in accordance with an embodi-
ment of the present invention. FIG. 5 depicts a flow chart of a
method of duplicate detection using a Bloom filter of an
exemplary embodiment. Exemplary method 500 is provided
by way of example, as there are a variety of ways to carry out
the methods disclosed herein. The method of FIG. 5 may be
applied to duplicate check detection or duplicate transaction
detection as described herein. The method 500 as shown in
FIG. 5 may be executed or otherwise performed by one or a
combination of various systems, such as a computer imple-
mented system. Each block shown in FIG. 5 represents one or
more processes, methods, and/or subroutines carried out in
the exemplary method 500. Each block may have an associ-
ated processing machine or the blocks depicted may be car-
ried out through one processor machine. Input may be desired
from a user during various parts of the below described
method, the input may be accomplished through a user inter-
face. Referring to FIG. 5, the exemplary method 500 may
begin at block 510. At block 510, a Bloom filter service may
beinitiated. At block 520, the Bloom filter service may be run.
At block 530, the Bloom filter service may be shut down.
These steps will be described in greater detail below.

While the method of FIG. 5 illustrates certain steps per-
formed in a particular order, it should be understood that the
embodiments of the present invention may be practiced by
adding one or more steps to the processes, omitting steps
within the processes and/or altering the order in which one or
more steps are performed.

Itshould be appreciated that the Bloom filter service shown
and depicted in FIG. 5 may be used in place of or in addition
to the hash function shown in FIGS. 2 and 7 (below). The
Bloom filter service may be used at block 410 in FIG. 4 in
place or in addition to the hash table. While a Bloom filter is
illustrated with respect to FIG. 5, other types of filters may be
implemented as well.

Atblock 510, the Bloom filter service may be initiated. The
last tables saved 512 may be read. If a recovery start, the
Bloom filter’s own hash journal 514 and other hash journal
516 may be read. For example, the journals 514 and 516 read
may be the most recent journals since the last successful table
save in order to update the Bloom filter tables to the point at
which the service failed. The other hash journal 516 may be a
hash journal data from other sites and/or locations running the
duplicate detection method. The loading of the journal data
allows the database to be recreated, updated, and synchro-
nized with other databases in operation running the duplicate

US 9,092,447 B1

19

detection method. The recovery start may be performed fol-
lowing an abnormal shutdown of the Bloom filter service.
Such a shutdown may be one where shutdown procedures
were not followed or able to be followed so that the tables
could be properly saved. An abnormal shutdown may mean
that additional processing, such as creation of hash values,
may have been performed after the Bloom filter service failed.

At block 520, the Bloom filter service may be executed.
The Bloom filter service may read the hashes from other sites
522, and set the corresponding bits in the Bloom filter table so
as to synchronize its table with those of the other sites. For
example, the Bloom filter service may be executed at multiple
sites on separate systems, such as separate VPC systems. The
hashes from other sites 522 may allow multiple locations to
each maintain a synchronized set of hash tables. The Bloom
filter may then read the items in the request 524. The Bloom
filter may compute a number of hashes and journal to other
site 526, so that the other sites may similarly synchronize
their tables. For example, four hashes per item may be com-
puted. In other embodiments, a different number of hashes
may beused. The bits in the table at the locations addressed by
the hash values may be read. If the bits so read are not each
equal to a first value (e.g., 1), the item may not be considered
a duplicate suspect. In some embodiments, other combina-
tions of first values may be used. Following reading the
hashes, bits may be set at each of the hashes to indicate they
have been read. The Bloom filter service may return a flag or
other identification of suspect or not a suspect at 528. Such an
output may be in the various forms as discussed above for
FIGS.1,2,3, and 4.

At block 530, the Bloom filter service may be shut down.
The shut down may be performed after each input hash is
checked for suspected duplicates or based on other condi-
tions. The tables which have been updated in the foregoing
sections may be saved as the last tables saved 532. The tables
may be saved for a predetermined period of time. For
example, a certain amount of data may be saved in storage for
the Bloom filter to run the comparison’s against. It should be
appreciated that last tables saved 512 and last tables saved 532
may be the same table. For example, the tables saved may be
sized to hold a week’s checks. Multiple tables corresponding
to different days or weeks, for example, may be checked so as
to detect duplicates between current items and items pro-
cessed during those previous periods. At the end of the day, or
at the end of the week, the oldest table may be discarded and
a new table started for the next day’s or week’s items. Other
such table organizations and sizes are possible.

FIG. 6 depicts a flow chart of a method of duplicate trans-
action detection of an exemplary embodiment. Exemplary
method 600 is provided by way of example, as there are a
variety of ways to carry out the methods disclosed herein. The
method 600 as shown in FIG. 6 may be executed or otherwise
performed by one or a combination of various systems, such
as a computer implemented system. Each block shown in
FIG. 6 represents one or more processes, methods, and/or
subroutines carried out in the exemplary method 600. Each
block may have an associated processing machine or the
blocks depicted may be carried out through one processor
machine. Input may be desired from a user during various
parts of the below described method, the input may be accom-
plished through a user interface. Referring to FIG. 6, the
exemplary method 600 may begin at block 610. At block 610,
an electronic file, containing transaction accounting data,
may be received. At block 615, elements of the transaction
data may be extracted and normalized. At block 620, a string
of characters may be created. At block 625, a function may be
applied to the string. At block 630, suspected duplicates may

10

15

20

25

30

35

40

45

50

55

60

65

20

be identified. At block 635, the suspected duplicates may be
reviewed. These steps will be described in greater detail
below.

It should be appreciated that while the method 600 is
described in terms of transaction processing, the method may
be applied to other types of data processing to perform dupli-
cate detection.

While the method of FIG. 6 illustrates certain steps per-
formed in a particular order, it should be understood that the
embodiments of the present invention may be practiced by
adding one or more steps to the processes, omitting steps
within the processes and/or altering the order in which one or
more steps are performed.

At block 610, a file may be received by a financial institu-
tion or other entity. The financial institution may be a bank,
credit union, or other such related entity. The file may include
transaction data and accounting data. The file may be in an
electronic format. The file may be in a standard format
wherein the standard format is used by the other institutions to
facilitate and standardize the exchange of data.

The file may be received by the financial institution
through a processing system. Various processing systems
may be used. The file may contain information in the form of
data elements pertaining to one or more transactions. Such
information may include account number data, transaction
amount, card type, account type, currency code(s), account-
ing data, and/or other data. The accounting data may be
contained in electronic data elements in the file. It should be
appreciated that in some embodiments, file may be received
in a non-electronic form. A conversion to electronic form may
be performed to allow extraction of the required information
from the file.

At block 615, elements of the transaction data may be
extracted and normalized. For example, certain elements of
the data may be extracted. According to an exemplary
embodiment, elements to extract may be chosen because they
may represent unique information to a particular transaction.
Non-limiting examples of various data elements are given
below for different transaction types. It should be appreciated
that all or a subset of the elements may be extracted and used
in the method for duplicate detection described below. A
subset or portion of each of the listed elements may be used.
Furthermore, the elements and transactions listed are exem-
plary only. For example, for bankcard transactions, the ele-
ments extracted may include: Card Number (PAN-Primary
Account Number), Transaction Amount, Card Type, Cur-
rency Code, and Merchant Name. For example, for ACH
payments, the elements extracted may include: Bank Account
Number, Bank Account Type (Checking or Savings), Bank
Routing Number, Transaction Amount, Payee Name, and
Effective Date. For example, for wire transfers, the elements
extracted may include: Receiver Bank Routing Number, Type
Code, Sender Bank Routing Number, Sender Bank Reference
Number, and Transaction Amount.

These elements or fields may be used because they repre-
sent elements that typically vary from transaction to transac-
tion. It should be appreciated that other elements and/or com-
binations of elements may be used. In an exemplary
embodiment, non-numeric characters, such as letters and
symbols, may be eliminated from the string to normalize it. It
should be appreciated that the normalization of data elements
may be extended to allow detection of duplicates between
different types of transaction types.

At block 620, a string of characters may be created in a
form which standardizes the data and removes variations due
to differences in the prior capture and data processing systems
in order to allow a valid comparison among transactions

US 9,092,447 B1

21

received from different sources. For example, the string of
characters may be created at least in part from the elements
extracted in block 615. Because the string of characters may
be normalized according to an exemplary embodiment, the
string created may be numeric in content. The string may then
be created by concatenating the extracted fields. Such a string
may have a resulting length, such as length .. For example,
selected elements may be extracted from the data, as dis-
cussed above, any non-numeric characters may be squeezed
out, and then any remaining numeric characters may be com-
bined into a string which may have a length L. It should be
appreciated that other strings or combination of data elements
may be created.

Atblock 625, a function may be applied to the string from
block 620. The function may be any suitable function to
reduce the string to one of a set of elements, e.g., a set of
ordered values which may be used as an index to a set of
Boolean objects. The function may be a mathematical func-
tion that converts the data, such as the string of characters,
into an integer, such as a uniformly distributed pseudorandom
integer, which may serve as an index into an array, such as an
array of bits. According to certain applications, a hash table
including individually addressed bits may be preferred based
upon its small size (relative to computer memory require-
ments) and ability to provide fast and efficient screening of
data. If such a table is initially filled with a value in an
initialized state, or initial value, such as “0”, and the bits are
set to an altered state, such as a first value, e.g. “1”, when
addressed, a new transaction can be determined to not be a
suspect duplicate if the bit addressed was not equal to the first
value, since no transaction that is hashed to that address has
been previously processed. In an exemplary embodiment, a
single bit hash table may be used. For example, the single bit
may be a first value, such as “1”, and the initial value, such as
“0”. Use of a single bit hash table may mean the table may be
of'a small, efficient size to allow use in the memory of a server
without the need to use disk space or perform look-ups in a
database table.

According to an exemplary embodiment, a filter, such as a
Bloom filter may be used. A Bloom filter is a data structure
that may be used to test for membership of elements in a
particular group. A Bloom filter may generate false positives
and not false negatives. The accuracy of the Bloom filter may
be improved by using multiple functions, such as hash func-
tions. The Bloom filter may provide a smaller table size. As a
result, the table of values takes up less computer memory
space. The use of'a Bloom filter may significantly increase the
accuracy of the function for identifying suspected duplicates.
For example, a Bloom filter using two or more hash functions
may be used. In an exemplary embodiment of the present
invention, a Bloom filter using four hash functions resulting
in four single bit hash tables may be used.

At block 630, suspected duplicates may be identified. For
example, the suspected duplicates may be identified based on
a comparison of the dataset obtained by applying a function,
such as the hash function, in block 625. If two datasets have
matching characters or are considered substantially similar,
then the two transactions that the data was extracted from may
be considered duplicates. Such suspected duplicates may be
flagged for further review. The dataset may be compared
against a dataset which may include other transaction data
from a pre-determined time period. A pre-determined time
period may be selected to allow a comparison with historical
data wherein a duplicate of a particular transaction may be
reasonably found. For example, a previous number weeks,
such as the previous four weeks, of processed transactions
may be used. Other time periods of data may be used.

10

15

20

25

30

35

40

45

50

55

60

65

22

In one embodiment, an element may be selected from a set
where an index of the element may correspond to the com-
puted value from the function applied in block 625, such as a
hash function. The set may be an array. The transaction may
be determined to not be a duplicate if the element is in an
initialized state, such as “0”. The transaction may be deter-
mined to be a suspected duplicate if the element is in an
altered state, such as “1”. Following the determination, if the
element was in the initialized state, the state of the element
may be modified such that it may be in the altered state.

At block 635, the suspected duplicates may be reviewed.
Such a review may be performed as an additional check to
confirm that the transactions are indeed duplicates. This
review may also identify false-positives. It should be appre-
ciated that suspected duplicates identified by the function in
block 620 may be a random collision of values. A random
collision of values may occur if the string and another string
happen to result in the same hash value, but in reality are not
duplicates. In an exemplary embodiment, the review of the
suspected duplicates may be manually conducted by an
operator. The operator may compare the suspected duplicates
against a historical database of transactions processed within
a pre-determined period of time. For example, the suspected
duplicates may be compared against transactions processed
within the last year or other predetermined time periods. In
some embodiments, the review may also be automated with
minimal or no operator intervention.

FIG. 7 depicts a flow chart of a method using a hash
function for duplicate check detection in an exemplary
embodiment. Exemplary method 700 is provided by way of
example, as there are a variety of ways to carry out the
methods disclosed herein. The method 700 as shown in FIG.
7 may be executed or otherwise performed by one or a com-
bination of various systems, such as a computer implemented
system. Each block shown in FIG. 7 represents one or more
processes, methods, and/or subroutines carried out in the
exemplary method 700. Each block may have an associated
processing machine or the blocks depicted may be carried out
through one processor machine. Input may be desired from a
user during various parts of the below described method, the
input may be accomplished through a user interface. Refer-
ring to FIG. 7, the exemplary method 700 may begin at block
710. At block 710, transaction data may be normalized. At
block 715, a byte and bit address may be computed. At block
720, a bit may be read from the hash table At block 725, a
check may be performed to determine if the bit value equals
a first value. At block 730, the bit may be set to the first value
in the hash table. At block 735, the original bit value is
returned. These steps will be described in greater detail
below.

While the method of FIG. 7 illustrates certain steps per-
formed in a particular order, it should be understood that the
embodiments of the present invention may be practiced by
adding one or more steps to the processes, omitting steps
within the processes and/or altering the order in which one or
more steps are performed.

At block 710, transaction data may be normalized. The
normalization of the data may include extraction of certain
data elements, creating a string of characters from the
extracted data, and normalizing the string through the use of
a suitable function. The first step in normalization may
involve extracting elements of the transaction data, such as
the accounting data. According to an exemplary embodiment,
these certain elements to extract may be chosen since they
may represent unique information to that particular transac-
tion because they represent fields that typically vary from
transaction to transaction. For example, for bankcard trans-

US 9,092,447 B1

23

actions, the elements extracted may include: Card Number
(PAN-Primary Account Number), Transaction Amount, Card
Type, Currency Code, and Merchant Name. For example, for
ACH payments, the elements extracted may include: Bank
Account Number, Bank Account Type (Checking or Sav-
ings), Bank Routing Number, Transaction Amount, Payee
Name, and Effective Date. For example, for wire transfers,
the elements extracted may include: Receiver Bank Routing
Number, Type Code, Sender Bank Routing Number, Sender
Bank Reference Number, and Transaction Amount. It should
be appreciated that other type of data, transactions, fields
and/or combinations of fields may be used.

Next, a string of characters may be created from the
extracted data. In an exemplary embodiment, non-numeric
characters, such as letters and symbols, may be eliminated
from the string. Therefore, according to an exemplary
embodiment, the string created may be numeric in content.
The string may then be created by concatenating the extracted
fields. Such a string may have a resulting length, such as
length L. For example, selected record fields may be extracted
from the data, as discussed above, any non-numeric charac-
ters may be squeezed out, and then remaining numeric char-
acters may be combined into a string which has a length L. It
should be appreciated that other strings or combination of
data fields may be created.

Then, a function may be applied to the string to normalize
it into a suitable format for indexing, sorting, and/or compar-
ing to other such strings in an efficient manner. The function
may be any suitable function to reduce the string to one of a
set of ordered values which may be used as an index to a set
of Boolean objects. Such a function may be a mathematical
function that converts the data, such as the string of charac-
ters, into an integer, such as a uniformly distributed pseudo-
random integer, which may serve as an index into an array,
such as an array of bits. According to certain applications, a
hash table including individually addressed bits may be pre-
ferred based upon its small size (relative to computer memory
requirements) and ability to provide fast and efficient screen-
ing of data. If such a table is initially filled with an initial
value, such as “0”, and the bits are set to an altered, or first
value, such as “1”, when addressed, a new transaction can be
determined to not be a suspect duplicate if the bit addressed
was not equal to the first value, since no transaction that is
hashed to that address has been previously processed. In an
exemplary embodiment, a single bit hash table may be used.
For example, the single bit may be a first value, such as “17,
and the initial value, such as “0”. Use of a single bit hash table
may mean the table may be of a small, efficient size to allow
use in the memory of a server without the need to use disk
space or perform look-ups in a database table.

According to an exemplary embodiment, a filter, such as a
Bloom filter may be used. A Bloom filter is a data structure
that may be used to test for membership of elements in a
particular group. A Bloom filter may generate false positives
and not false negatives. The accuracy of the Bloom filter may
be improved by using multiple functions, such as hash func-
tions. The Bloom filter may provide a smaller table size. As a
result, the table of values takes up less computer memory
space. The use of'a Bloom filter may significantly increase the
accuracy of the function for identifying suspected duplicates.
For example, a Bloom filter using two or more hash functions
may be used. In an exemplary embodiment of the present
invention, a Bloom filter using four hash functions resulting
in four single bit hash value addresses may be used. In this
exemplary embodiment, in order to qualify as a suspected
duplicate, the four bits addressed by the hash values should be
equal to the altered or first value. In alternative embodiments,
other bit size hash functions may be used and divided up into

10

15

20

25

30

35

40

45

50

55

60

65

24

a number of smaller size function. For example, a 128-bit
hash function may divided up into four 32-bit functions.

In an exemplary embodiment, the following hash function
may be used. It should be appreciated that the following is a
mere example and should not be construed to limit the various
embodiments of the present invention in any manner. The
following is purely illustrative. In this example, L is equal to
the string length. The result of the hash function is a hash
value which is entered in a hash table. In the following
example, showing the Jenkins One-at-a-Time hash algorithm,
a 64-bit hash value is used. Other algorithms and bit sizes may
be used as are known in the art. For example, a 128-bit MD5
algorithm may be used.

for (i=0; i<L; i++) {

hash+=MICR][i];

hash+=(hash<<10);

hash "(hash>>6);

hash+=(hash<<3);

hash "=(hash>>11);

hash+=(hash<<15);

return hash.

At block 715, the byte and bit address may be computed.
The bit address may be of the hash value calculated above. In
some embodiments, another bit address may be used. This bit
address may be 3-bit address of the bit within a byte. The
following is an example calculation of the bit address:

bitaddress=hash & 0x7.

Other bit addresses may be used.

The byte address may vary depending upon the hash table
size. For example, a 4 Gigabyte table will have a 32-bit
address. The following is an example of calculation of the
byte address:

byteaddress=(hash>>3) & OxFFFFFFFFE

Other byte addresses may be used. In general, for a table of N
bytes, byteaddress=(hash>>3) % N, where % is the modulo
operator that returns the remainder of division by N.

At block 720, the bit may be read from the hash table. The
bit may be read from the hash table to determine if it is unique.
For example, if the bit equals to a first value, such as 1, then it
may be a suspected duplicate. If the bit equals a second value,
such as 0, then it may not be a duplicate. It should be appre-
ciated that other such bit combinations may be used based on
the structure of the hash table. An example of an expression
which reads a single bit from the hash table is:

bit=(table[byteaddress]>>bitaddress) & 1.

Other bit functions may be used.

Atblock 725, a check may be made whether the bit is equal
to a first value, such as 1. The suspected duplicates may be
those with a bit value that is the first value.

At block 730, the bit may be set to the first value in hash
table. This may be performed if the bit does not equal the first
value (e.g., it is equal to the initial value, such as 0). The bit
may be set for a future comparison and to mark the bit as being
used. For example, by marking the bit with a first value allows
for a comparison with another batch of check data such that
another computed bit with the same address will then show up
as a suspected duplicate. An example of an expression for
setting a bit in the hash table is:

table[byteaddress]|=1<<bitaddress.

Other functions may be used.

At block 735, the original bit value may be returned. If the
bit was equal to the first value in block 725, then the method
may proceed to this step. The original bit value may be
returned to identify the suspected duplicate transaction for

US 9,092,447 B1

25

further analysis. If the bit value was equal to the first value,
then the transaction may be considered a suspected duplicate.

FIG. 8 is a duplicate detection system, according to an
exemplary embodiment of the present invention. System 800
may provide various functionality and features associated
with duplicate detection. More specifically, system 800 may
include a file receipt module 804, a processor 806, an
accounting data extraction module 808, a character string
creation module 810, a function module 812, an output mod-
ule 814, a user interface module 816, and a storage module
818. While a single illustrative block, module or component is
shown, these illustrative blocks, modules or components may
be multiplied for various applications or different application
environments. In addition, the modules or components may
be further combined into a consolidated unit. The modules
and/or components may be further duplicated, combined and/
or separated across multiple systems at local and/or remote
locations. For example, some of the modules or functionality
associated with the modules may be supported by a separate
application or platform. Other implementations and architec-
tures may be realized. It should be appreciated that system
800 may be a computer, such as a general purpose computer
which may include a processing machine which has one or
more processors. Such a processing machine may execute
instruction stored in a memory or memory to process the data.

As noted above, the processing machine executes the
instructions that are stored in the memory or memories to
process data. The memory may be non-transitory. This pro-
cessing of data may be in response to commands by a user or
users of the processing machine, in response to previous
processing, in response to a request by another processing
machine and/or any other input, for example. As described
herein, a module performing functionality may comprise a
processor and vice-versa.

A file 802 may be input into the system 800. The file may
be received by a financial institution. The system 800 may
represent a financial institution, such as a bank, credit union,
or other such related entity. In addition, the system 800 may
be a third party of other intermediary entity in communication
with a financial institution. In some embodiments, the system
800 may represent a financial processing system located at a
financial institution. Other architectures and schemes may be
realized. The file may include data corresponding to more
than one transaction. The file may be electronic and may
contain electronic data elements corresponding a plurality of
transactions. The file may be a message or sequence of mes-
sages received via a network using a communications proto-
col and containing one or more transactions. Different types
of transactions may be included in one file.

The file may be received by the financial institution by a
processing system. Various types of processing systems may
be used. The file may contain various information pertaining
to one or more transactions. Such information may include
accounting data, card account numbers, currency codes,
account types, merchant names, etc.

A file receipt module 804 may receive the file 802. The file
receipt module 804 may be an input or routing point in the
system 800. For example, file receipt module 804 may be a
router such that the file 802 is received and then sent to the
proper module, such as the accounting data extraction module
808, or other module for further processing. The file receipt
module 804 may store the file 802. For example, the file 802
may be stored in file receipt module 804 while awaiting
further processing, the receipt of other files, and/or other
actions or events. The file receipt module 804 may process the
file 802. For example, file receipt module 804 may combine
two or more files into one file for further processing in the

5

10

15

20

25

30

35

40

45

50

55

60

65

26

system 800. The file receipt module 804 may review the file
802 to ensure it is in the proper format for further processing
in system 800. The file receipt module 804 may convert the
file 802 into a proper format as preferred. In some embodi-
ments, the file receipt module 804 may create an alert that
may involve user intervention in the event the file 802 is not in
the proper format for processing, contains an error, or for
other reasons. In some embodiments, storage 818 may be
used to store the file 802. It should be appreciated that the file
receipt module 804 may make a back-up copy of the file 802
prior to any further routing or processing of the file. For
example, such aback-up copy may serve as an archive copy of
the check file 802. Other uses are possible. The back-up copy
may be stored in storage 818 or other such associated storage.

A processor 806 may be used for processing, calculating,
and/or organizing the data. Other functions may be performed
by the processor as desired. One or more processors may be
provided. The processor 806 is shown as a separate module in
FIG. 8, however in some embodiments, the processor 806
may be a distributed processor, such that the processor 806
may be distributed among the various modules shown in FI1G.
8. In other embodiments, the processor 800 may be shared
with other functionality within other modules (not shown)
that may be present in the system 800.

An accounting data extraction module 808 may extract
certain elements of the data in the file. For example, certain
elements of the accounting data associated with a transaction
may be extracted. The accounting data may be extracted from
the file 802. The accounting data may be extracted for each
transaction contained in the file 802. According to an exem-
plary embodiment, certain elements to extract may be chosen
because they may represent unique information to that par-
ticular transaction as described above.

A character string creation module 810 may create a string
of characters based at least in part on the accounting data
extracted by the accounting data extraction module 808. For
example, the string of characters may be created from a subset
of'the elements extracted. In an exemplary embodiment, non-
numeric characters, such as letters and symbols, may be
eliminated from the string. Other types of filtering may be
applied. Therefore, according to an exemplary embodiment,
the string created may be numeric in content. The string may
then be created by concatenating the extracted fields. The
concatenated string may have a length, such as length L. For
example, selected record fields may be extracted from the
MICR data, as discussed above, any non-numeric characters
may be squeezed out, and then remaining numeric characters
may combined into a string which may have a length L. It
should be appreciated that other strings and/or combination
of data fields may be created.

A function module 812 may apply a function to the char-
acter string created by the character string creation module
810. A function may be applied to the string to normalize it
into a suitable format for indexing, sorting, and/or comparing
to other such strings in an efficient manner. The function may
be any suitable function to reduce the string to one of a set of
ordered values which may be used as an index to a set of
Boolean objects. Such a function may be a mathematical
function that converts the data, such as the string of charac-
ters, into an integer, such as a uniformly distributed pseudo-
random integer, which may serve as an index into an array of
bits. According to certain applications, a hash table including
individually addressed bits may be preferred based upon its
small size (relative to computer memory requirements) and
ability to provide fast and efficient screening of data. If such
a table is initially filled with a initial value, such as “0”, and
the bits are set to an altered, or first value, such as “1”, when

US 9,092,447 B1

27

addressed, a new transaction can be determined to not be a
suspect duplicate if the bit addressed was not equal to the first
value, since no transaction that is hashed to that address has
been previously processed. In an exemplary embodiment, a
single bit hash table may be used. For example, the single bit
may be a first value, such as “1”, and the initial value, such as
“0”. Use of a single bit hash table may mean the table may be
of'a small, efficient size to allow use in the memory of a server
without the need to use disk space or perform look-ups in a
database table.

According to an exemplary embodiment, a filter, such as a
Bloom filter may be used. A Bloom filter is a data structure
that may be used to test for membership of elements in a
particular group. A Bloom filter may generate false positives
and not false negatives. The accuracy of the Bloom filter may
be improved by using multiple functions, such as hash func-
tions. The Bloom filter may provide a smaller table size. As a
result, the table of values takes up less computer memory
space. The use of'a Bloom filter may significantly increase the
accuracy of the function for identifying suspected duplicates.
For example, a Bloom filter using two or more hash functions
may be used. In an exemplary embodiment of the present
invention, a Bloom filter using four hash functions resulting
in four single bit hash address values may be used. In this
exemplary embodiment, in order to qualify as a suspected
duplicate, the four bits addressed by the hash values should be
equal to the first value. In alternative embodiments, other bit
size hash functions may be used and divided up into a number
of'smaller size function. For example, a 128-bit hash function
may be divided up into four 32-bit functions.

It should be appreciated that the function module 812 may
use the method described above in FIG. 7. Other such meth-
ods may be used to perform the duplicate detection of the
embodiments of the present invention.

An output module 814 may output the suspected duplicates
identified as a result of the application of the function in the
function module 812. The suspected duplicates may be iden-
tified based on a comparison of the dataset obtained by apply-
ing the function, such as the hash function, described above in
the function module 812. For example, if two datasets have
matching characters or are considered substantially similar,
then the two transaction that the data was extracted from may
be considered suspected duplicates. Such suspected dupli-
cates may be flagged for further review. The dataset may be
compared against a dataset which may include other transac-
tion data from a pre-determined time period. A pre-deter-
mined time period may be selected to allow a comparison
with historical data wherein a duplicate of a particular trans-
action may be reasonably found. For example, a previous
number of weeks, such as the previous four weeks, of pro-
cessed transaction may be used. Other such time periods of
data may be used. The output module may provide an output
in various formats. An alert on a display (not shown) may be
output. The alert may be visual in nature. Such a visual alert
may be in any suitable format, such as graphics, text or a
combination thereof. Audio alerts may be used. An audio alert
may include a speaker capability to provide a way to output
the sound associated with the audio alert. The output may be
a printout, printed to a printer (not shown) attached to the
output module 814. A combination of outputs may be used.
The suspected duplicate listing may be stored in storage, such
as storage 818.

A user interface 816 may allow a user to interact with the
system 800. The user interface 816 may allow the user to
review the output from the output module 814. The user
interface module 816 may provide a suitable interface for the
user, such as a graphical user interface (GUI). User input to

10

15

20

25

30

35

40

45

50

55

60

65

28

the system 800 through the user interface module 816 may be
completed through such input devices as a keyboard, a touch
screen, a trackwheel, or any other input means, as is known in
the art.

A storage module 818 may provide storage of data associ-
ated with system 800. The storage 818 may include any
suitable storage device for the data from the system 800 and
its associated modules. While a single storage module is
shown for illustrative purposes, storage 818 may include mul-
tiple data storage devices at one or multiple locations. The one
or more data storage devices may be operatively associated
with individual modules in the system 800. Storage 818 may
be local, remote, or a combination thereof with respect to the
system 800. Storage 818 may utilize a redundant array of
disks (RAID), striped disks, hot spare disks, tape, disk, or
other computer accessible storage. In one or more embodi-
ments, storage 818 may be a storage area network (SAN), an
internet small computer systems interface (iSCSI) SAN, a
Fibre Channel SAN, a common Internet File System (CIFS),
network attached storage (NAS), or a network file system
(NFS). The storage 818 may have back-up capability built-in.
Communications with the system 800 may be over anetwork,
such as a local area network or communications may be over
a direct connection to the system 800. Data may be transmit-
ted and/or received from the system 800. Data transmission
and receipt may utilize cabled network or telecom connec-
tions such as an Ethernet RJ45/Category 5 Ethernet connec-
tion, a fiber connection, a traditional phone wireline connec-
tion, a cable connection or other wired network connection. A
wireless network may be used for the transmission and receipt
of data.

FIG. 9 is an exemplary method for implementation of a
duplication detection system in accordance with an embodi-
ment of the present invention. FIG. 9 depicts a flow chart of a
method of duplicate detection of an exemplary embodiment.
Exemplary method 900 is provided by way of example, as
there are a variety of ways to carry out the methods disclosed
herein. The method 900 as shown in FIG. 9 may be executed
or otherwise performed by one or a combination of various
systems, such as acomputer implemented system. Each block
shown in FIG. 9 represents one or more processes, methods,
and/or subroutines carried out in the exemplary method 900.
Each block may have an associated processing machine or the
blocks depicted may be carried out through one processor
machine. Input may be desired from a user during various
parts of the below described method, the input may be accom-
plished through a user interface.

Referring to FIG. 9, the exemplary method 900 may begin
at block 902. A block 902, a file may be received from a
processing system. A block 904, the file may be validated and
parsed. At block 906, an exclusion table containing data val-
ues or ranges may be checked. At block 908, a determination
may be made based on the data values, ranges and business
rules whether duplicate detection may be desired. At block
910, if duplicate detection should be performed, a hash table
duplication screen may be performed. At block 912, a trans-
action may be identified as a duplicate suspect. At block 914,
if the transaction is not considered a duplicate suspect, then an
item may be created in a database. At block 916, a database
may be accessed. At block 918, a query may be performed for
specific types of transactions. At block 920, a determination
may be made for a duplicate transaction. At block 922, an
analysis may be performed of the duplicate transaction. At
block 924, a determination is made of a duplicate. At block
926, the duplicate may be added to a duplicate work queue. At
block 928, an analysis for allowable duplicates may be per-
formed. At block 930, a determination may be made of an

US 9,092,447 B1

29

allowed duplicate. At block 932, the allowed duplicate may
be logged for a fraud pattern review. At block 934, a manual
exception work queue entry may be added. These steps will
be described in greater detail below.

While the method of FIG. 9 illustrates certain steps per-
formed in a particular order, it should be understood that the
embodiments of the present invention may be practiced by
adding one or more steps to the processes, omitting steps
within the processes and/or altering the order in which one or
more steps are performed.

At block 902, a file may be received from a processing
system. The processing system may be a processing system
for financial data, such as transaction data. It should be appre-
ciated that other such systems may be used. The file may be in
a particular format. The file may contain the data correspond-
ing to one or more transactions including the transactions
associated accounting data. The file may contain the account-
ing data for one or more transactions. Such data may be
processed by the financial institution. The data may contain
information pertaining to different transaction types such as
bankcard transactions, ACH payment data, and wire trans-
fers. The file may contain all one type of transaction or a
plurality of types of transactions. Each transaction may have
a set of data elements associated with it. Other such transac-
tion types may be possible as are known in the art. According
to an exemplary application, the method depicted may be
performed on each individual transaction contained in the
file. In another example, groups of transactions may be pro-
cessed. The method depicted in the following blocks may be
performed following receipt of the file by the financial insti-
tution. For example, the duplicate detection processing may
occur following file receipt prior to any accounting process-
ing or other such processing by the financial institution. This
may be an advantage because duplicates may be detected and
separated early in the processing chain.

At block 904, the file may be validated, parsed, and/or
otherwise processed. The file may be processed to extract the
transaction data for the one or more transactions in the file.
The accounting data may be extracted from the data elements
of each transaction. Specifically, certain fields from the
accounting data may be extracted as described above.

These extracted accounting fields may be validated. Dur-
ing validation, if errors are found in the file, corrections may
be performed automatically. In some embodiments, an opera-
tor may be alerted to the error and manual intervention may be
performed to correct the error. In addition, a combination of
automatic and manual error correction may be performed.
Other variations may be realized. It should be appreciated that
processing may be applied on the extracted accounting data to
alter the format into an acceptable format for the processing
system. For example, foreign transaction data may contain
fields that are formatted in a different manner than those for a
United States transaction.

At block 906, a query may be performed of an exclusion
table. Such a query may be performed to check if the duplicate
detection should be performed for each transaction or group
of transactions contained in the file. Some transactions or
groups of transactions may be excluded from duplicate detec-
tion for various reasons as would be appreciated in the art.
Such exclusions may save processing time and resources by
preventing unnecessary processing, for example. Excluded
items may include certain account numbers, card numbers,
merchants, or combinations thereof.

At block 908, a determination may be performed as to
whether duplicate detection should be performed. Such a
determination may depend, at least in part, on the results of
block 906. Additionally, other such reasons may exist

10

15

20

25

30

35

40

45

50

55

60

65

30

wherein a transaction may not be subject to the duplication
detection method. If duplicate detection should be performed,
then the method may proceed to block 910. If no duplicate
detection is performed, then the method may proceed to block
914.

At block 910, a hash table duplicate screening may be
performed. The hash table duplicate screening may be per-
formed to identify suspected duplicates. Such a hash table
duplicate screening is described in FIG. 7 above. It should be
appreciated that other such methods for screening are pos-
sible, such as using a Bloom filter as described above and in
FIG. 5.

At block 912, duplicate suspects may be identified. The
duplicate suspects may be those transactions whose hash
values match that of at least one other transaction. The colli-
sion of the hash values may be indicative of a duplicate
transaction since the hash value is computed from certain data
fields which make up the accounting data associated with a
particular transaction. It should be appreciated that there may
be one or more duplicate suspects identified.

Atblock 914, an item may be created in an items database.
The items database may contain information regarding the
transactions processed in the system. The information may
have item information pertaining to a predetermined period of
time. For example, the items database may contain informa-
tion pertaining to the transactions processed during a prede-
termined period of time by the financial institution. Block 914
may receive inputs from block 908, if no duplicate detection
is performed. Block 914 may receive inputs from block 912.
The input from block 912 may be the transactions determined
not to be duplicate suspects which may include the transac-
tions that passed the hash table screening since their values
did not collide with any other values present in the hash table
during the screening. It should be appreciated that transac-
tions that may be duplicate suspects may not be added to the
items database at this stage. Block 914 may receive inputs
from block 920 and 932 as will be described below.

Block 916 represents the items database, which may
include any suitable data structure to maintain the informa-
tion and allow access and retrieval of the information. For
example, the database may keep the data in an organized
fashion. The items database may be a database, such as an
Oracle database, a Microsoft SQL Server database, a DB2
database, a MySQL database, a Sybase database, an object
oriented database, a hierarchical database, a flat database,
and/or another type of database as may be known in the art.

The items database may be stored in any suitable storage
device. The storage may include one of more data storage
devices. The one or more data storage devices may be opera-
tively associated with the items database in block 916. The
storage may be local, remote, or a combination thereof with
respect to the database. The storage 916 may utilize a redun-
dant array of disks (RAID), striped disks, hot spare disks,
tape, disk, or other computer accessible storage. In one or
more embodiments, the storage may be a storage area net-
work (SAN), an internet small computer systems interface
(iSCSI) SAN, a Fibre Channel SAN, a common Internet File
System (CIFS), network attached storage (NAS), or a net-
work file system (NFS). The database may have back-up
capability built-in. Communications with the items database
may be over a network, such as a local area network or
communications may be over a direct connection to the data-
base. Data may be transmitted and/or received from the items
database. Data transmission and receipt may utilize cabled
network or telecom connections such as an Ethernet RJ45/
Category 5 Ethernet connection, a fiber connection, a tradi-
tional phone wireline connection, a cable connection or other

US 9,092,447 B1

31

wired network connection. A wireless network may be used
for the transmission and receipt of data.

Atblock 918, a query by data elements may be performed.
The query may be performed using one or more data elements
associated with a transaction. The query may be performed on
the one or more duplicate suspects. The query may be per-
formed in the items database of' block 916. This query may be
automatically or manually performed. A combination of
automatic and manual querying may be used. The query may
be performed to validate the duplicate suspects identified in
block 912, to ensure that the duplicate suspects are not a false
positive. The query is performed in the items database to
provide a validation of the duplicate suspect when compared
against a larger subset of transaction data.

At block 920, a determination of duplicate data may be
performed. The duplicate data may be accounting data. For
example, from the query, it may be determined whether the
duplicate suspect has accounting data that matches another
transaction in the items database. If no duplicate accounting
data is found, then the duplicate suspect may not be a dupli-
cate. If so, then an entry into the items database may be
performed at block 914 to provide an entry for potential future
duplicate comparison. If duplicate accounting data is found in
the items database, then the method continues to block 922.

At block 922, the duplicate accounting data may be ana-
lyzed. The analysis may be performed to determine if the
transaction represents a duplicate file or other transaction.
These types of files may be caused by operational or system
errors. For example, another bank may send a file with trans-
action data that is a duplicate of previously sent transaction
data. This analysis may allow determination of a potential
pattern regarding resubmission of transaction data. A com-
mon cause of duplicate transactions may then be determined.

At block 924, a check for mass duplicates may be per-
formed. The check for mass duplicates may be performed to
identify a pattern of transactions using the same accounting
data, such as the same card number. In other words, mass
duplicates may have a cause that is different from the types
identified in block 922.

Atblock 926, if a mass duplicate is found, an entry into the
mass duplicate work queue may be made. This entry may alert
the system to allow flagging of the mass duplicates in an
appropriate manner for further processing. In some embodi-
ments, this entry may add the identified mass duplicates into
the exclusion table that may preclude duplicate processing of
the identified mass duplicates, such as in block 906.

Atblock 928, an analysis may be performed for allowable
duplicate cases or what appear to be duplicate cases. As
discussed above, in some cases, there may be duplicate trans-
action that are allowable. For example, a transaction may be
deliberately charged twice for a single customer. Such as, for
example, two debit card transactions at the same store for the
same item charged by the same customer within a short period
of time. Duplicate transactions may occur at automated teller
machines or financial transaction devices. In other embodi-
ments, the duplicate transaction may be a mistake or inad-
vertent such as a merchant inadvertently charging an item
twice or a customer submitting a purchase request twice or
more during an e-commerce transaction at a website.

At block 930, a decision if a duplicate is allowed may be
performed. If the duplicate is allowed, then the method pro-
ceeds to block 932. If the duplicate is not allowed, then
method continues to block 934.

At block 932, if the duplicate is allowed, a log entry for
fraud pattern may be made. Such a log entry may be made for
future use if the same transaction appears again. The log may
be analyzed for patterns of duplicate transactions which indi-

10

15

20

25

30

35

40

45

50

55

60

65

32

cate possible fraud by statistical analysis, displaying the log
for manual fraud review, or other actions. Further, following
the log entry, an entry may be made into the items database for
future comparison.

At block 934, if the duplicate is not allowed, a manual
exception may be added to the work queue. The manual
exception may be used to flag the duplicate. Such a flag may
ensure that no further processing of the transaction occurs.
The manual exception may be used to alert an operator to
remove the accounting data associated with the duplicate
from the file so that it is not processed. In some embodiments,
this removal of the data may be performed automatically. The
operator may review the duplicate suspect and decide
whether to allow the transaction to be posted or cleared to the
paying bank, to be returned to the depositor or bank of first
deposit, to be removed from the transaction processing
stream, or to be referred for fraud investigation. It is under-
stood that the operator may perform other processing at this
point. For example, the operator may enter account adjust-
ments to fix the impact of the duplicate transaction.

Hereinafter, aspects of implementation of the inventions
will be described. As described above, the method of the
invention may be computer implemented as a system. The
system of the invention or portions of the system of the
invention may be in the form of a “processing machine,” such
as a general purpose computer, for example. As used herein,
the term “processing machine” is to be understood to include
at least one processor that uses at least one memory. The at
least one memory stores a set of instructions. The instructions
may be either permanently or temporarily stored in the
memory or memories of the processing machine. The proces-
sor executes the instructions that are stored in the memory or
memories in order to process data. The set of instructions may
include various instructions that perform a particular task or
tasks, such as those tasks described above in the flowcharts.
Such a set of instructions for performing a particular task may
be characterized as a program, software program, or simply
software.

As noted above, the processing machine used to implement
the invention may be a general purpose computer. However,
the processing machine described above may also utilize any
of a wide variety of other technologies including a special
purpose computer, a computer system including a microcom-
puter, mini-computer or mainframe for example, a pro-
grammed microprocessor, a micro-controller, a peripheral
integrated circuit element, a CSIC (Customer Specific Inte-
grated Circuit) or ASIC (Application Specific Integrated Cir-
cuit) or other integrated circuit, a logic circuit, a digital signal
processor, a programmable logic device such as a FPGA,
PLD, PLA or PAL, or any other device or arrangement of
devices for example capable of implementing the steps of the
process of the invention.

It is appreciated that in order to practice the method of the
invention as described above, it is not necessary that the
processors and/or the memories of the processing machine be
physically located in the same geographical place. For
example, each of the processors and the memories used in the
invention may be located in geographically distinct locations
and connected so as to communicate in any suitable manner.
Additionally, it is appreciated that each of the processor and/
or the memory may be composed of different physical pieces
of equipment. Accordingly, it is not necessary that the pro-
cessor be one single piece of equipment in one location and
that the memory be another single piece of equipment in
another location. For example, it is contemplated that the
processor may be two pieces of equipment in two different
physical locations. The two distinct pieces of equipment may

US 9,092,447 B1

33

be connected in any suitable manner. Additionally, the
memory may include two or more portions of memory in two
or more physical locations.

To explain further, processing as described above is per-
formed by various components and various memories. How-
ever, it is appreciated that the processing performed by two
distinct components as described above may, in accordance
with a further embodiment of the invention, be performed by
asingle component. Further, the processing performed by one
distinct component as described above may be performed by
two distinct components. In a similar manner, the memory
storage performed by two distinct memory portions as
described above may, in accordance with a further embodi-
ment of the invention, be performed by a single memory
portion. Further, the memory storage performed by one dis-
tinct memory portion as described above may be performed
by two memory portions.

Further, various technologies may be used to provide com-
munication between the various processors and/or memories,
as well as to allow the processors and/or the memories of the
invention to communicate with any other entity; e.g., so as to
obtain further instructions or to access and use remote
memory stores, for example. Such technologies used to pro-
vide such communication might include a network, the Inter-
net, Intranet, Extranet, LAN, an Ethernet, or any client server
system that provides communication, for example. Such
communications technologies may use any suitable protocol
such as TCP/IP, UDP, or OSI, for example.

As described above, a set of instructions is used in the
processing of the invention. The set of instructions may be in
the form of a program or software. The software may be in the
form of system software or application software, for example.
The software might also be in the form of a collection of
separate programs, a program module within a larger pro-
gram, or a portion of a program module, for example. The
software used might also include modular programming in
the form of object oriented programming. The software tells
the processing machine what to do with the data being pro-
cessed.

Further, it is appreciated that the instructions or set of
instructions used in the implementation and operation of the
invention may be in a suitable form such that the processing
machine may read the instructions. For example, the instruc-
tions that form a program may be in the form of a suitable
programming language, which is converted to machine lan-
guage or object code to allow the processor or processors to
read the instructions. For example, written lines of program-
ming code or source code, in a particular programming lan-
guage, are converted to machine language using a compiler,
assembler or interpreter. The machine language is binary
coded machine instructions that are specific to a particular
type of processing machine, e.g., to a particular type of com-
puter, for example. The computer understands the machine
language.

Any suitable programming language may be used in accor-
dance with the various embodiments of the invention. Illus-
tratively, the programming language used may include
assembly language, Ada, APL, Basic, C, C++, C#, COBOL,
dBase, Forth, Fortran, Java, Modula-2, Pascal, Prolog,
Python, REXX, Ruby, Visual Basic, and/or JavaScript, for
example. Further, it is not necessary that a single type of
instructions or single programming language be utilized in
conjunction with the operation of the system and method of
the invention. Rather, any number of different programming
languages may be utilized as is necessary or desirable.

Also, the instructions and/or data used in the practice of the
invention may utilize any compression or encryption tech-

20

30

35

40

45

50

34

nique or algorithm, as may be desired. An encryption module
might be used to encrypt data. Further, files or other data may
be decrypted using a suitable decryption module, for
example.

As described above, the invention may illustratively be
embodied in the form of a processing machine, including a
computer or computer system, for example, that includes at
least one memory. It is to be appreciated that the set of
instructions, e.g., the software for example, that enables the
computer operating system to perform the operations
described above may be contained on any of a wide variety of
media or medium, as desired. Further, the data for example
processed by the set of instructions might also be contained
on any of a wide variety of media or medium. For example,
the particular medium, e.g., the memory in the processing
machine, utilized to hold the set of instructions and/or the data
used in the invention may take on any of a variety of physical
forms or transmissions, for example. Illustratively, the
medium may be in the form of paper, paper transparencies, a
compact disk, a DVD, an integrated circuit, a hard disk, a
floppy disk, an optical disk, a magnetic tape, a RAM, aROM,
a PROM, a EPROM, a wire, a cable, a fiber, communications
channel, a satellite transmissions or other remote transmis-
sion, as well as any other medium or source of data that may
be read by the processors of the invention.

Further, the memory or memories used in the processing
machine that implements the invention may be in any of a
wide variety of forms to allow the memory to hold instruc-
tions, data, or other information, as is desired. Thus, the
memory might be in the form of a database to hold data. The
database might use any desired arrangement of files such as a
flat file arrangement or a relational database arrangement, for
example.

In the system and method of the invention, a variety of
“user interfaces” may be utilized to allow a user to interface
with the processing machine or machines that are used to
implement the invention. As used herein, a user interface
includes any hardware, software, or combination of hardware
and software used by the processing machine that allows a
user to interact with the processing machine. A user interface
may be in the form of a dialogue screen for example. A user
interface may also include any of a mouse, touch screen,
keyboard, voice reader, voice recognizer, dialogue screen,
menu box, list, checkbox, toggle switch, a pushbutton or any
other device that allows a user to receive information regard-
ing the operation of the processing machine as it processes a
set of instructions and/or provide the processing machine
with information. Accordingly, the user interface is any
device that provides communication between a user and a
processing machine. The information provided by the user to
the processing machine through the user interface may be in
the form of a command, a selection of data, or some other
input, for example.

As discussed above, a user interface is utilized by the
processing machine that performs a set of instructions such
that the processing machine processes data for a user. The
user interface is typically used by the processing machine for
interacting with a user either to convey information or receive
information from the user. However, it should be appreciated
that in accordance with some embodiments of the system and
method of the invention, it is not necessary that a human user
actually interact with a user interface used by the processing
machine of the invention. Rather, it is contemplated that the
user interface of the invention might interact, e.g., convey and
receive information, with another processing machine, rather
than a human user. Accordingly, the other processing
machine might be characterized as a user. Further, it is con-

US 9,092,447 B1

35

templated that a user interface utilized in the system and
method of the invention may interact partially with another
processing machine or processing machines, while also inter-
acting partially with a human user.

While the embodiments have been particularly shown and
described within the framework of duplicate detection, it will
be appreciated that variations and modifications may be
effected by aperson of ordinary skill in the art without depart-
ing from the scope of the invention. Furthermore, one of
ordinary skill in the art will recognize that such processes and
systems do not need to be restricted to the specific embodi-
ments described herein. Other embodiments, uses and advan-
tages of the present invention will be apparent to those skilled
in the art from consideration of the specification and practice
of the invention disclosed herein. The specification and
examples should be considered exemplary. The intended
scope of the invention is limited by the claims appended
hereto.

What is claimed is:

1. A system for detecting duplicate transactions, compris-
ing:

at least one processor;

a memory comprising computer-readable instructions
which when executed by the processor cause the proces-
sor to perform the steps comprising:

receiving electronic data that comprises accounting data
associated with one or more transactions;

processing the electronic data to extract the accounting
data;

creating a character string from a subset of the accounting
data for each of the one or more transactions;

applying a Bloom filter using multiple hash functions to the
character string;

determining that a transaction is a potential suspected
duplicate if each bit value read is equal to a first value;

determining that the transaction is not a suspected dupli-
cate if at least one bit value is not equal to the first value;

outputting a listing of each potential suspected duplicate;
and

performing additional processing on each potential sus-
pected duplicate to determine if the potential suspected
duplicate is a true suspected duplicate.

2. The system of claim 1, further comprising:

comparing the electronic data to an exclusion table; and

removing the electronic data from further processing upon
transaction data appearing on the exclusion table.

3. The system of claim 1, further comprising:

allowing a user to interact with the system through an
interface.

4. The system of claim 3, wherein the interface allows a

user to review the listing of suspected duplicates.

5. The system of claim 1, wherein the electronic data is in
a format from which the accounting data can be extracted.

6. The system of claim 1, wherein the accounting data
comprises electronic data elements.

7. The system of claim 4, wherein the user queues one or
more of the true suspected duplicates for fraud analysis.

8. The system of claim 1, wherein the determination of
suspected duplicates is performed against transaction data for
a predetermined time period.

9. The system of claim 1, wherein the Bloom filter is part of
a Bloom filter service.

10. The system of claim 9, further comprising:

starting the Bloom filter service upon receipt of the elec-
tronic data.

10

15

20

25

30

35

40

45

50

55

60

65

36

11. The system of claim 10, further comprising:

stopping the Bloom filter service upon completion of deter-

mining if each transaction is a suspected duplicate.

12. The system of claim 1, wherein the one or more trans-
actions comprise bankcard transactions.

13. The system of claim 12, wherein the bankcard transac-
tions comprise credit or debit transactions.

14. The system of claim 12, wherein the electronic data
comprises: card number, transaction amount, card type, cur-
rency code, and merchant name.

15. The system of claim 1, wherein the one or more trans-
actions comprise ACH payments.

16. The system of claim 15, wherein the electronic data
comprises: bank account number, bank account type, bank
routing number, transaction amount, payee name, and effec-
tive date.

17. The system of claim 1, wherein the one or more trans-
actions comprise wire transfers.

18. The system of claim 17, wherein the electronic data
comprises: receiver bank routing number, type code, sender
bank routing number, sender bank reference number, and
transaction amount.

19. A method for detecting duplicate transactions, com-
prising:

receiving electronic data that comprises accounting data

associated with one or more transactions;

processing, by at least one computer processor, the elec-

tronic data to extract the accounting data;

creating, by the at least one computer processor, a character

string from a subset of the accounting data for each of the
one or more transactions;

applying a Bloom filter using multiple hash functions to the

character string;

determining that a transaction is a potential suspected

duplicate if each bit value read is equal to a first value;
determining that the transaction is not a suspected dupli-
cate if at least one bit value is not equal to the first value;
outputting a listing of each potential suspected duplicate;
and
performing additional processing on each potential sus-
pected duplicate to determine if the potential suspected
duplicate is a true suspected duplicate.

20. The method of claim 19, further comprising:

comparing the electronic data to an exclusion table; and

removing the electronic data from further processing upon
transaction data appearing on the exclusion table.

21. The method of claim 19, further comprising:

allowing a user to interact with the system through an

interface.

22. The method of claim 21, wherein the interface allows a
user to review the listing of suspected duplicates.

23. The method of claim 19, wherein the electronic data is
in a format from which the accounting data can be extracted.

24. The method of claim 19, wherein the accounting data
comprises electronic data elements.

25. The method of claim 22, wherein the user queues one or
more of the true suspected duplicates for fraud analysis.

26. The method of claim 19, wherein the determination of
suspected duplicates is performed against transaction data for
a predetermined time period.

27. The method of claim 19, wherein the Bloom filter is
part of a Bloom filter service.

28. The method of claim 27, further comprising:

starting the Bloom filter service upon receipt of the elec-

tronic data.

US 9,092,447 B1
37

29. The method of claim 28, further comprising:

stopping the Bloom filter service upon completion of deter-

mining if each transaction is a suspected duplicate.

30. The method of claim 19, wherein the one or more
transactions comprise bankcard transactions. 5
31. The method of claim 30, wherein the bankcard trans-

actions comprise credit or debit transactions.

32. The method of claim 30, wherein the electronic data
comprises: card number, transaction amount, card type, cur-
rency code, and merchant name. 10

33. The method of claim 19, wherein the one or more
transactions comprise ACH payments.

34. The method of claim 33, wherein the electronic data
comprises: bank account number, bank account type, bank
routing number, transaction amount, payee name, and effec- 15
tive date.

35. The method of claim 19, wherein the one or more
transactions comprise wire transfers.

36. The method of claim 35, wherein the electronic data
comprises: receiver bank routing number, type code, sender 20
bank routing number, sender bank reference number, and
transaction amount.

37. The system of claim 1, wherein the multiple hash
functions comprise four hash functions.

38. The method of claim 19, wherein the multiple hash 25
functions comprise four hash functions.

#* #* #* #* #*

